Label-free multiphoton microscopy is a powerful platform for biomedical imaging. Recent advancements have demonstrated the capabilities of transient absorption microscopy (TAM) for label-free quantification of hemoglobin and stimulated Raman scattering (SRS) microscopy for pathological assessment of label-free virtual histochemical staining. We propose the combination of TAM and SRS with two-photon excited fluorescence (TPEF) to characterize, quantify, and compare hemodynamics, vessel structure, cell density, and cell identity in vivo between age groups. In this study, we construct a simultaneous nonlinear absorption, Raman, and fluorescence (SNARF) microscope with the highest reported in vivo imaging depth for SRS and TAM at 250-280 μm to enable these multimodal measurements. Using machine learning, we predict capillary-lining cell identities with 90% accuracy based on nuclear morphology and capillary relationship. The microscope and methodology outlined herein provides an exciting route to study several research topics, including neurovascular coupling, blood-brain barrier, and neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913696PMC
http://dx.doi.org/10.1038/s42003-022-03166-6DOI Listing

Publication Analysis

Top Keywords

simultaneous nonlinear
8
nonlinear absorption
8
absorption raman
8
raman fluorescence
8
fluorescence snarf
8
vivo simultaneous
4
snarf imaging
4
imaging mouse
4
mouse brain
4
brain cortical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!