The molecular signaling pathways that orchestrate angiogenesis have been widely studied, but the role of biophysical cues has received less attention. Interstitial flow is unavoidable in vivo, and has been shown to dramatically change the neovascular patterns, but the mechanisms by which flow regulates angiogenesis remain poorly understood. Here, we study the complex interactions between interstitial flow and the affinity for matrix binding of different chemokine isoforms. Using a computational model, we find that changing the matrix affinity of the chemokine isoform can invert the effect of interstitial flow on angiogenesis-from preferential growth in the direction of the flow when the chemokine is initially matrix-bound to preferential flow against the flow when it is unbound. Although fluid forces signal endothelial cells directly, our data suggests a mechanism for the inversion based on biotransport arguments only, and offers a potential explanation for experimental results in which interstitial flow produced preferential vessel growth with and against the flow. Our results point to a particularly intricate effect of interstitial flow on angiogenesis in the tumor microenvironment, where the vessel network geometry and the interstitial flow patterns are complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913640 | PMC |
http://dx.doi.org/10.1038/s41598-022-08186-0 | DOI Listing |
Adv Mater
January 2025
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China.
Substitution metal doping strategies are crucial for developing catalysts capable of activating O, but the leaching of metal dopants has greatly hindered their potential for extensive oxidation reactions under mild conditions. Here, the study develops an entropy-increase strategy to synthesize high-entropy metal (Mg, Ca, Mn, Fe, and Co) interstitial functionalized anatase TiO (HE-TiO) nanosheets, demonstrating remarkable degradation efficiency across a wide pH range and exceptional stability in a flow-by electro-catalytic reactor. Relative to that of pristine TiO, the intense lattice distortion on the (001) plane, an average lattice expansion of 2% on the (100) plane, and decrease of second shell peak of X-ray absorption spectra serve as compelling evidence for the formation of metal interstitials in HE-TiO.
View Article and Find Full Text PDFComput Biol Med
December 2024
University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering, Boulder, CO, USA; Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA. Electronic address:
Breast cancer cells sense shear stresses in response to interstitial fluid flow in bone and induce specific biological responses. Computational fluid dynamics models have been instrumental in estimating these shear stresses to relate the cell mechanoresponse to exact mechanical signals, better informing experiment design. Most computational models greatly simplify the experimental and cell mechanical environments for ease of computation, but these simplifications may overlook complex cell-substrate mechanical interactions that significantly change shear stresses experienced by cells.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France.
The driving mechanisms at the base of the clearance of biological wastes in the brain interstitial space (ISS) are still poorly understood and an actively debated subject. A complete comprehension of the processes that lead to the aggregation of amyloid proteins in such environment, hallmark of the onset and progression of Alzheimer's disease, is of crucial relevance. Here we employ combined computational fluid dynamics and molecular dynamics techniques to uncover the role of fluid flow and proteins transport in the brain ISS.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China. Electronic address:
Objective: Pulmonary fibrosis (PF) is a chronic, progressive, and irreversible lung interstitial disease of unknown etiology with a fatal outcome. M2 macrophages have been recognized to play a significant role in PF pathogenesis. The role of protein hypoxia-inducible factor 1-α (HIF-1α) in M2 macrophage polarization in PF is largely unknown.
View Article and Find Full Text PDFAnn Anat
December 2024
Department of Urology, Graduate School of Medicine and Dentistry, Hiroshima University School of Medicine, Hiroshima, Japan.
Background: There is little information about when and how cavernosal sinusoidal endothelia develop in the external genitalia of fetuses.
Methods: We examined histological sections of erectile tissue in 37 human fetuses (25 males and 12 females) whose gestational age (GA) ranged from 8 to 40 weeks.
Results: The sinusoidal lumen was filled with blood in the glans of the penis and clitoris at a GA of 10 to 11 weeks, and in the corpus spongiosum at a GA of 15 to 16 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!