A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of hearing recovery in unilateral sudden sensorineural hearing loss using artificial intelligence. | LitMetric

Prediction of hearing recovery in unilateral sudden sensorineural hearing loss using artificial intelligence.

Sci Rep

Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, College of Medicine, Korea University, 123, Jeokgeum-ro (Gojan-dong), Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea.

Published: March 2022

Despite the significance of predicting the prognosis of idiopathic sudden sensorineural hearing loss (ISSNHL), no predictive models have been established. This study used artificial intelligence to develop prognosis models to predict recovery from ISSNHL. We retrospectively reviewed the medical data of 453 patients with ISSNHL (men, 220; women, 233; mean age, 50.3 years) who underwent treatment at a tertiary hospital between January 2021 and December 2019 and were followed up after 1 month. According to Siegel's criteria, 203 patients recovered in 1 month. Demographic characteristics, clinical and laboratory data, and pure-tone audiometry were analyzed. Logistic regression (baseline), a support vector machine, extreme gradient boosting, a light gradient boosting machine, and multilayer perceptron were used. The outcomes were the area under the receiver operating characteristic curve (AUROC) primarily, area under the precision-recall curve, Brier score, balanced accuracy, and F1 score. The light gradient boosting machine model had the best AUROC and balanced accuracy. Together with multilayer perceptron, it was also significantly superior to logistic regression in terms of AUROC. Using the SHapley Additive exPlanation method, we found that the initial audiogram shape is the most important prognostic factor. Machine/deep learning methods were successfully established to predict the prognosis of ISSNHL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913667PMC
http://dx.doi.org/10.1038/s41598-022-07881-2DOI Listing

Publication Analysis

Top Keywords

gradient boosting
12
sudden sensorineural
8
sensorineural hearing
8
hearing loss
8
artificial intelligence
8
logistic regression
8
light gradient
8
boosting machine
8
multilayer perceptron
8
balanced accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!