A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HORRENDOUS NMR: Establishing correlations in solution-state NMR by reinstating non-secular J-coupling terms. | LitMetric

HORRENDOUS NMR: Establishing correlations in solution-state NMR by reinstating non-secular J-coupling terms.

J Magn Reson

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; US National High Magnetic Field Laboratory, Tallahassee, FL 32304, USA. Electronic address:

Published: April 2022

Homonuclear isotropic mixing modules allow J-coupled spins to exchange magnetization even when separated by chemical shift offsets that exceed their couplings. This is exploited in TOtal Correlation SpectroscopY (TOCSY) experiments and its variants, which facilitate these homonuclear polarization exchanges by applying broadband RF pulses. These then establish an effective Hamiltonian in which chemical shift offsets are erased, while J-coupling terms -including flip-flop components- remain active. The polarization that these non-secular terms will transfer among systems of chemically inequivalent sites over the course of a mixing period, are widely used modules in 1D and in multidimensional liquid-state NMR. Homonuclear correlation experiments are also common in solids NMR, particularly among X = C or N nuclei. Solids NMR experiments are often challenged by high-power RF demands which have led to a family of homonuclear solid-state correlation experiments that avoid pulsing on the nuclei of interest, and focus instead on the Hs that are bonded to them. These solid experiments usually reintroduce/strengthen H-X dipolar couplings; these, in conjunction with assistance from rotational resonance effects, bring back the truncated X-X dipolar interactions and facilitate the generation of cross peaks. The present study explores whether a similar goal can be achieved for solution-state counterparts, based on the reintroduction of truncated flip-flop terms in the J-coupling Hamiltonian via the pulsing on other, heteronuclear species. A proposal to achieve this is derived, and the resulting HOmonucleaR Recoupling by hEteroNuclear DecOUplingS (HORRENDOUS) approach to provide correlations between like nuclei without pulsing on them, is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2022.107176DOI Listing

Publication Analysis

Top Keywords

j-coupling terms
8
chemical shift
8
shift offsets
8
correlation experiments
8
solids nmr
8
homonuclear
5
experiments
5
horrendous nmr
4
nmr establishing
4
establishing correlations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!