Performance Comparison of Computational Methods for the Prediction of the Function and Pathogenicity of Non-coding Variants.

Genomics Proteomics Bioinformatics

National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China. Electronic address:

Published: June 2023

Non-coding variants in the human genome significantly influence human traits and complex diseases via their regulation and modification effects. Hence, an increasing number of computational methods are developed to predict the effects of variants in human non-coding sequences. However, it is difficult for inexperienced users to select appropriate computational methods from dozens of available methods. To solve this issue, we assessed 12 performance metrics of 24 methods on four independent non-coding variant benchmark datasets: (1) rare germline variants from clinical relevant sequence variants (ClinVar), (2) rare somatic variants from Catalogue Of Somatic Mutations In Cancer (COSMIC), (3) common regulatory variants from curated expression quantitative trait locus (eQTL) data, and (4) disease-associated common variants from curated genome-wide association studies (GWAS). All 24 tested methods performed differently under various conditions, indicating varying strengths and weaknesses under different scenarios. Importantly, the performance of existing methods was acceptable for rare germline variants from ClinVar with the area under the receiver operating characteristic curve (AUROC) of 0.4481-0.8033 and poor for rare somatic variants from COSMIC (AUROC = 0.4984-0.7131), common regulatory variants from curated eQTL data (AUROC = 0.4837-0.6472), and disease-associated common variants from curated GWAS (AUROC = 0.4766-0.5188). We also compared the prediction performance of 24 methods for non-coding de novo mutations in autism spectrum disorder, and found that the combined annotation-dependent depletion (CADD) and context-dependent tolerance score (CDTS) methods showed better performance. Summarily, we assessed the performance of 24 computational methods under diverse scenarios, providing preliminary advice for proper tool selection and guiding the development of new techniques in interpreting non-coding variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787016PMC
http://dx.doi.org/10.1016/j.gpb.2022.02.002DOI Listing

Publication Analysis

Top Keywords

computational methods
16
variants curated
16
variants
13
non-coding variants
12
methods
10
variants human
8
assessed performance
8
rare germline
8
germline variants
8
variants clinvar
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!