Establishment of a stable SARS-CoV-2 replicon system for application in high-throughput screening.

Antiviral Res

Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, 409-3898, Japan; Center for Life Science Research, University of Yamanashi, Yamanashi, 409-3898, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan. Electronic address:

Published: March 2022

Experiments with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited by the need for biosafety level 3 (BSL3) conditions. A SARS-CoV-2 replicon system rather than an in vitro infection system is suitable for antiviral screening since it can be handled under BSL2 conditions and does not produce infectious particles. However, the reported replicon systems are cumbersome because of the need for transient transfection in each assay. In this study, we constructed a bacterial artificial chromosome vector (the replicon-BAC vector) including the SARS-CoV-2 replicon and a fusion gene encoding Renilla luciferase and neomycin phosphotransferase II, examined the antiviral effects of several known compounds, and then established a cell line stably harboring the replicon-BAC vector. Several cell lines transiently transfected with the replicon-BAC vector produced subgenomic replicon RNAs (sgRNAs) and viral proteins, and exhibited luciferase activity. In the transient replicon system, treatment with remdesivir or interferon-β but not with camostat or favipiravir suppressed the production of viral agents and luciferase, indicating that luciferase activity corresponds to viral replication. VeroE6/Rep3, a stable replicon cell line based on VeroE6 cells, was successfully established and continuously produced viral proteins, sgRNAs and luciferase, and their production was suppressed by treatment with remdesivir or interferon-β. Molnupiravir, a novel coronavirus RdRp inhibitor, inhibited viral replication more potently in VeroE6/Rep3 cells than in VeroE6-based transient replicon cells. In summary, our stable replicon system will be a powerful tool for the identification of SARS-CoV-2 antivirals through high-throughput screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900913PMC
http://dx.doi.org/10.1016/j.antiviral.2022.105268DOI Listing

Publication Analysis

Top Keywords

replicon system
16
sars-cov-2 replicon
12
replicon-bac vector
12
replicon
9
high-throughput screening
8
viral proteins
8
luciferase activity
8
transient replicon
8
treatment remdesivir
8
remdesivir interferon-β
8

Similar Publications

The pathway to resolve dimeric forms distinguishes plasmids from megaplasmids in Enterobacteriaceae.

Nucleic Acids Res

January 2025

Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France.

Bacterial genomes contain a plethora of secondary replicons of divergent size. Circular replicons must carry a system for resolving dimeric forms, resulting from recombination between sister copies. These systems use site-specific recombinases.

View Article and Find Full Text PDF

Dynamic transitions of initiator binding coordinate the replication of the two chromosomes in Vibrio cholerae.

Nat Commun

January 2025

Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.

The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V.

View Article and Find Full Text PDF

Background: The infections of bacterial origin represent a significant problem to the public healthcare worldwide both in clinical and community settings. Recent decade was marked by limiting treatment options for bacterial infections due to growing antimicrobial resistance (AMR) acquired and transferred by various bacterial species, especially the ones causing healthcare-associated infections, which has become a dangerous issue noticed by the World Health Organization. Numerous reports shown that the spread of AMR is often driven by several species-specific lineages usually called the 'global clones of high risk'.

View Article and Find Full Text PDF

Background: The emergence of colistin resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant public health concern, as colistin has been the last resort for treating such infections. This study aimed to investigate the prevalence and molecular characteristics of colistin-resistant CRKP isolates in Central South China.

Methods: CRKP isolates from twelve hospitals in Central South China were screened for colistin resistance using broth microdilution.

View Article and Find Full Text PDF

Imaging of viral replication in live cells by using split fluorescent protein-tagged reporter flaviviruses.

Virology

December 2024

The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China. Electronic address:

The knowledge on the life cycle of flaviviruses is still incomplete, and no direct-acting antivirals against their infections are clinically available. Herein, by screening via a Zika virus (ZIKV) replicon assay, we found that the N-terminus of NS2A exhibited great tolerance to the insertions of different split fluorescent proteins (split-FPs). Furthermore, both ZIKV and dengue virus encoding a split-FP-tagged NS2A propagated efficiently, and the split-FP-tagged ZIKVs had good genetic stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!