A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Feature fusion Siamese network for breast cancer detection comparing current and prior mammograms. | LitMetric

Purpose: Automatic detection of very small and nonmass abnormalities from mammogram images has remained challenging. In clinical practice for each patient, radiologists commonly not only screen the mammogram images obtained during the examination, but also compare them with previous mammogram images to make a clinical decision. To design an artificial intelligence (AI) system to mimic radiologists for better cancer detection, in this work we proposed an end-to-end enhanced Siamese convolutional neural network to detect breast cancer using previous year and current year mammogram images.

Methods: The proposed Siamese-based network uses high-resolution mammogram images and fuses features of pairs of previous year and current year mammogram images to predict cancer probabilities. The proposed approach is developed based on the concept of one-shot learning that learns the abnormal differences between current and prior images instead of abnormal objects, and as a result can perform better with small sample size data sets. We developed two variants of the proposed network. In the first model, to fuse the features of current and previous images, we designed an enhanced distance learning network that considers not only the overall distance, but also the pixel-wise distances between the features. In the other model, we concatenated the features of current and previous images to fuse them.

Results: We compared the performance of the proposed models with those of some baseline models that use current images only (ResNet and VGG) and also use current and prior images (long short-term memory [LSTM] and vanilla Siamese) in terms of accuracy, sensitivity, precision, F1 score, and area under the curve (AUC). Results show that the proposed models outperform the baseline models and the proposed model with the distance learning network performs the best (accuracy: 0.92, sensitivity: 0.93, precision: 0.91, specificity: 0.91, F1: 0.92 and AUC: 0.95).

Conclusions: Integrating prior mammogram images improves automatic cancer classification, specially for very small and nonmass abnormalities. For classification models that integrate current and prior mammogram images, using an enhanced and effective distance learning network can advance the performance of the models.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.15598DOI Listing

Publication Analysis

Top Keywords

mammogram images
28
current prior
16
images
12
distance learning
12
learning network
12
current
9
breast cancer
8
cancer detection
8
small nonmass
8
nonmass abnormalities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!