Context.—: Breast carcinoma grade, as determined by the Nottingham Grading System (NGS), is an important criterion for determining prognosis. The NGS is based on 3 parameters: tubule formation (TF), nuclear pleomorphism (NP), and mitotic count (MC). The advent of digital pathology and artificial intelligence (AI) have increased interest in virtual microscopy using digital whole slide imaging (WSI) more broadly.

Objective.—: To compare concordance in breast carcinoma grading between AI and a multi-institutional group of breast pathologists using digital WSI.

Design.—: We have developed an automated NGS framework using deep learning. Six pathologists and AI independently reviewed a digitally scanned slide from 137 invasive carcinomas and assigned a grade based on scoring of the TF, NP, and MC.

Results.—: Interobserver agreement for the pathologists and AI for overall grade was moderate (κ = 0.471). Agreement was good (κ = 0.681), moderate (κ = 0.442), and fair (κ = 0.368) for grades 1, 3, and 2, respectively. Observer pair concordance for AI and individual pathologists ranged from fair to good (κ = 0.313-0.606). Perfect agreement was observed in 25 cases (27.4%). Interobserver agreement for the individual components was best for TF (κ = 0.471 each) followed by NP (κ = 0.342) and was worst for MC (κ = 0.233). There were no observed differences in concordance amongst pathologists alone versus pathologists + AI.

Conclusions.—: Ours is the first study comparing concordance in breast carcinoma grading between a multi-institutional group of pathologists using virtual microscopy to a newly developed WSI AI methodology. Using explainable methods, AI demonstrated similar concordance to pathologists alone.

Download full-text PDF

Source
http://dx.doi.org/10.5858/arpa.2021-0299-OADOI Listing

Publication Analysis

Top Keywords

concordance breast
12
breast carcinoma
12
pathologists
9
artificial intelligence
8
breast pathologists
8
virtual microscopy
8
carcinoma grading
8
grading multi-institutional
8
multi-institutional group
8
interobserver agreement
8

Similar Publications

G-cleave LC3B biosensor: monitoring autophagy and assessing resveratrol's synergistic impact on doxorubicin-induced apoptosis in breast cancer cells.

Breast Cancer Res

December 2024

School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan.

Autophagy, a crucial process in cancer, is closely intertwined with both tumor progression and drug resistance development. However, existing methods used to assess autophagy activity often pose invasiveness and time-related constraints, limiting their applicability in preclinical drug investigations. In this study, we developed a non-invasive autophagy detection system (NIADS-autophagy, also called G-cleave LC3B biosensor) by integrating a split-luciferase-based biosensor with an LC3B cleavage sequence, which swiftly identified classic autophagic triggers, such as Earle's Balanced Salt Solution and serum deprivation, through protease-mediated degradation pathways.

View Article and Find Full Text PDF

Background: This study aimed to construct, evaluate, and validate nomograms for breast cancer-specific survival (BCSS) and overall survival (OS) prediction in patients with HER2- overexpressing (HER2+) metastatic breast cancer (MBC).

Methods: The Surveillance, Epidemiology, and End Results (SEER) database was used to select female patients diagnosed with HER2 + MBC between 2010 and 2015. These patients were distributed into training and validation groups (7:3 ratio).

View Article and Find Full Text PDF

Purpose: During breast cancer surgery, the use of dyes such as indigo carmine, methylene blue, or indocyanine green (ICG) for targeting axillary lymph nodes (ALNs) under ultrasound guidance can result in rapid diffusion, complicated tissue differentiation, and disruption of staining. LuminoMark™, a novel ICG-hyaluronic acid mixture, can provide real-time visualization and minimize dye spread, thereby ensuring a clear surgical field. The aim of our study was to evaluate the efficacy of LuminoMark™ for targeting ALNs in patients with breast cancer.

View Article and Find Full Text PDF

Immediate breast reconstruction provides breast cancer patients with a valuable opportunity to restore breast shape. However, post-reconstruction breast asymmetry remains a common issue that affects patient satisfaction. This study aims to quantify breast asymmetry after surgery using magnetic resonance imaging (MRI) and assess its impact on both breast satisfaction and overall outcome satisfaction, offering scientific evidence to guide improvements in preoperative evaluation.

View Article and Find Full Text PDF

Purpose: Multigene assays guide treatment decisions in early-stage hormone receptor-positive breast cancer. OncoFREE, a next-generation sequencing assay using 179 genes, was developed for this purpose. This study aimed to evaluate the concordance between the Oncotype DX (ODX) Recurrence Score (RS) and the OncoFREE Decision Index (DI) and to compare their performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!