Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The acoustic scattering by highly inhomogeneous objects is analyzed by a method-of-moment solver for the volume integral equation. To enable the treatment of acoustically large scatterers of various topologies, the iterative numerical solution of the resulting system is accelerated via a kernel independent algebraic compression scheme: blocks of the hierarchically partitioned moment stiffness matrix are expressed in butterfly form that, for volume problems, scales favorably compared to the popular low-rank approximation. A detailed description of the algorithm, as implemented in this work, is provided. Validations of the numerical formulation, parameter tuning, and performance study of the fast method for acoustically large objects are presented, in various settings and for a range of examples, representative of biomedical and oceanographic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2022.3158830 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!