Free energy profiles form the cornerstone in the study of protein folding and function. In this study, the free energy profile of SUMO1 protein is directly reconstructed using an extension of the Jarzynski equality from atomic force microscope (AFM) based single-molecule force spectroscopy (SMFS) experiments. SUMO1 is a ubiquitin-like posttranslational modifier protein having a β clamp motif in its structure, imparting it with mechanical stability. We use the Jarzynski equality to obtain the equilibrium free energy profile from repeated nonequilibrium single-molecule pulling experiments. Indeed, the free energy values determined by the Jarzynski equality are lesser than the normal work average at all extensions. The free energy profiles constructed for the two velocities (100 and 400 nm/s) overlap with each other. The unfolding free energy barrier is estimated to be ∼7.5 kcal/mol. We anticipate that the Jarzynski equality can be applied in a similar manner to other ubiquitin-like proteins to extract their differences in the free energy profile, and hence, the effect of sequence diversity of structurally homologous proteins on the free energy landscape can be studied.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c08596DOI Listing

Publication Analysis

Top Keywords

free energy
36
energy profile
16
jarzynski equality
16
energy
9
profile sumo1
8
nonequilibrium single-molecule
8
single-molecule pulling
8
pulling experiments
8
free
8
experiments free
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!