Cancer Conformational Landscape Shapes Tumorigenesis.

J Proteome Res

Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

Published: April 2022

During tumorigenesis, DNA mutations in protein coding sequences can alter amino acid sequences which can change the structures of proteins. While the 3D structure of mutated proteins has been studied with atomic resolution, the precise impact of somatic mutations on the 3D proteome during malignant transformation remains unknown because methods to reveal protein structures in high throughput are limited. Here, we measured the accessibility of the lysine ε-amine for chemical modification across proteomes using covalent protein painting (CPP) to indirectly determine alterations in the 3D proteome. CPP is a novel, high-throughput quantitative mass spectrometric method that surveyed a total of 8052 lysine sites across the 60 cell lines of the well-studied anticancer cell line panel (NCI60). Overall, 5.2 structural alterations differentiated any cancer cell line from the other 59. Structural aberrations in 98 effector proteins correlated with the selected presence of 90 commonly mutated proteins in the NCI60 cell line panel, suggesting that different tumor genotypes reshape a limited set of effector proteins. We searched our dataset for druggable conformational aberrations and identified 49 changes in the cancer conformational landscape that correlated with the growth inhibition profiles of 300 drug candidates out of 50,000 small molecules. We found that alterations in heat shock proteins are key predictors of anticancer drug efficacy, which implies that the proteostasis network may have a general but hitherto unrecognized role in maintaining malignancy. Individual lysine sites may serve as biomarkers to guide drug selection or may be directly targeted for anticancer drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653087PMC
http://dx.doi.org/10.1021/acs.jproteome.1c00906DOI Listing

Publication Analysis

Top Keywords

cancer conformational
8
conformational landscape
8
mutated proteins
8
lysine sites
8
cell panel
8
effector proteins
8
anticancer drug
8
proteins
6
landscape shapes
4
shapes tumorigenesis
4

Similar Publications

Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites.

View Article and Find Full Text PDF

A computational chemistry-based approach to optimizing PD-1/PD-L1 inhibitors.

Front Chem

January 2025

Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China.

Introduction: To design effective small molecule inhibitors targeting the immune checkpoint PD-1/PD-L1 and to explore their inhibitory activity.

Methods: In this paper, a total of 69 PD-1/PD-L1 inhibitors with the same backbone were searched through opendatabases, and their docking mechanism with PD-L1 protein was investigatedby molecular docking method, and the active conformation of the inhibitors was explored. The biological activity of the four newly designed inhibitors was also evaluated using ELISA.

View Article and Find Full Text PDF

Mechanofluorochromic (MFC) materials are emerging as a versatile candidate for optoelectronic and biomedical applications. In the present work, we designed and synthesized four MFC materials, namely BT-PTZ-1, BT-PTZ-2, BT-PTZO-1, and BT-PTZO-2, using Suzuki cross-coupling reaction. These materials possess benzothiazole (BT) as an acceptor moiety and different donors, including phenothiazine (PTZ) and triphenylamine (TPA), with variations in their spacer units.

View Article and Find Full Text PDF

Structure and function of a near fully-activated intermediate GPCR-Gαβγ complex.

Nat Commun

January 2025

Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.

Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.

View Article and Find Full Text PDF

Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2.

Sci Signal

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!