The negative effects of SARS-CoV-2 infection on the musculoskeletal system include symptoms of fatigue and sarcopenia. The aim of this study is to assess the impact of COVID-19 on foot muscle strength and evaluate the reproducibility of peak ankle torque measurements in time by using a custom-made electronic dynamometer. In this observational cohort study, we compare two groups of four participants, one exposed to COVID-19 throughout measurements and one unexposed. Peak ankle torque was measured using a portable custom-made electronic dynamometer. Ankle plantar flexor and dorsiflexor muscle strength was captured for both feet at different ankle angles prior and post COVID-19. Average peak torque demonstrated no significant statistical differences between initial and final moment for both groups (p = 0.945). An increase of 4.8%, p = 0.746 was obtained in the group with COVID-19 and a decrease of 1.3%, p = 0.953 was obtained in the group without COVID-19. Multivariate analysis demonstrated no significant differences between the two groups (p = 0.797). There was a very good test−retest reproducibility between the measurements in initial and final moments (ICC = 0.78, p < 0.001). In conclusion, peak torque variability is similar in both COVID-19 and non-COVID-19 groups and the custom-made electronic dynamometer is a reproducible method for repetitive ankle peak torque measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914901PMC
http://dx.doi.org/10.3390/s22052073DOI Listing

Publication Analysis

Top Keywords

custom-made electronic
16
electronic dynamometer
16
peak ankle
12
ankle torque
12
peak torque
12
muscle strength
8
torque measurements
8
initial final
8
group covid-19
8
covid-19
7

Similar Publications

This study aims to develop and validate a standardized methodology for creating high-fidelity, custom-made, patient-specific 3D-printed vascular models that serve as tools for preoperative planning and training in the endovascular treatment of peripheral artery disease (PAD). Ten custom-made 3D-printed vascular models were produced using computed tomography angiography (CTA) scans of ten patients diagnosed with PAD. CTA images were analyzed using Syngo.

View Article and Find Full Text PDF

Unlocking the multidimensionality of plantar pressure measurements for the evaluation of footwear in people with diabetes.

J Biomech

January 2025

Department of Rehabilitation Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands.

The offloading effectiveness of custom-made footwear for people with diabetes is assessed using plantar pressure measurements. While such pressure data is multidimensional, it is mostly analyzed using a scalar - maximum peak plantar pressure (PMax). We aimed to investigate the associations between multiple peak plantar pressure parameters for footwear assessment and determine whether this assessment depends on the chosen parameter.

View Article and Find Full Text PDF

Introduction And Importance: Internal iliac artery aneurysms repair represents a life-threatening condition due to their anatomical position and the risk of rupture. Iliac branch devices are strongly recommended for anatomically suitable patients, but limited alternatives exist when their use is unsuitable. The use of custom-made fenestrated endografts is well documented in other aortic territories, however, their application for the treatment of internal iliac artery aneurysm remains limited.

View Article and Find Full Text PDF

Gas and vapor phase detection of chemical threats on cooled SERS substrates.

Talanta

December 2024

Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.

Detection of airborne chemical threats is an emerging challenge amidst the prevailing tumultuous global milieu. Extensive investigation has showcased the substantial promise of surface-enhanced Raman spectroscopy (SERS) for the on-site identification of hazardous chemicals present in liquid mediums, whether directly from a fluid source or through methodologies such as swab sampling. Nonetheless, exploration into the applicability of SERS for the detection of gas or vapor-phase chemical threats remains severely constrained.

View Article and Find Full Text PDF

Background: Non-invasiveness and comfort are crucial in the conservative management of distal radius and scaphoid fractures. While fiberglass casts are standard, three-dimensional (3D)-printed orthoses offer a promising alternative.

Purpose: To compare patient experiences, safety perceptions, and satisfaction between a 3D orthosis and fiberglass cast for distal radius or scaphoid fractures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!