Although microprisms have become an important medical means of strabismus treatment, related research concerning the design, fabrication, and testing of microprismatic glasses for preventing eyestrain has rarely been reported. In this study, the structure of microprismatic glasses for preventing eyestrain related to using electronic monitors, including computers and mobile phones, is introduced. A designing theory of anti-fatigue glasses with microprisms is developed. The fabrication technique and the process are described, and the performances of the fabricated microprisms are characterized. Finally, a compact testing system for the measurement of prismatic diopter is designed and constructed. This measuring system can be used not only for Fresnel microprisms, but also for other types of prisms. The measured results agree with our calculations. Although this study is focused on optimizing the objective prismatic diopter for anti-fatigue microprismatic glasses, 2.0-3.0 prismatic diopters (Δ) for each eye in the anti-fatigue glasses are suggested according to our experience on strabismus treatments. The clinical research for patients using the developed anti-fatigue glasses will be fully implemented in our further research to confirm the optimal subjective prismatic value.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914742 | PMC |
http://dx.doi.org/10.3390/s22051933 | DOI Listing |
Int J Biol Macromol
March 2024
Special Glass Key Lab of Hainan Province (Hainan University), State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:
Due to marvelous sensitivity and flexibility, conductive hydrogels are popularly used as strain sensors in intelligent skin and wearable electronic devices fields. However, hydrogel tends to be destroyed after long-term use or in accident, leading to performance degradation. Herein, we developed an environmental-friendly Ti-containing conductive hydrogel.
View Article and Find Full Text PDFInt J Mol Sci
August 2022
School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
Polyvinyl alcohol (PVA) hydrogels are promising implants due to the similarity of their low-friction behavior to that of cartilage tissue, and also due to their non-cytotoxicity. However, their poor mechanical resistance and insufficient durability restricts their application in this area. With the development of biodegradable glass fibers (BGF), which show desirable mechanical performance and bioactivity for orthopedic engineering, we designed a novel PVA hydrogel composite reinforced with biodegradable glass fibers, intended for use in artificial cartilage repair with its excellent cytocompatibility and long-term mechanical stability.
View Article and Find Full Text PDFSensors (Basel)
March 2022
College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
Although microprisms have become an important medical means of strabismus treatment, related research concerning the design, fabrication, and testing of microprismatic glasses for preventing eyestrain has rarely been reported. In this study, the structure of microprismatic glasses for preventing eyestrain related to using electronic monitors, including computers and mobile phones, is introduced. A designing theory of anti-fatigue glasses with microprisms is developed.
View Article and Find Full Text PDFDent Mater J
August 2017
Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology.
To explore the optimal pre-sintering temperature for graded glass/zirconia material, glass/zirconia specimens were prepared and pre-sintered at 900, 1,000 and 1,100°C respectively, glass infiltration and densification at 1,450°C. Monolith Y-TZP specimens were sintered at 1,450°C. Nanoindentation was used to test Young's modulus and Hardness.
View Article and Find Full Text PDFThe diopter distribution is key to the successful design of a progressive addition lens. A hyperbolic tangential function is then introduced to describe well the desired diopter distribution on the lens. Simulation and fabrication show that the astigmia on the whole surface is very close to the addition, exhibiting superior performance than that of currently used high-order polynomials and cosine functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!