Acoustic Doppler current profilers (ADCPs) were developed to acquire water current velocities, as well as depth-dependent echo intensities. As the backscattering strength of an underwater object can be estimated from the measured echo intensity, the ADCP can be used to estimate plankton populations and distributions. In this study, the backscattering strength of bubble clusters in a water tank was estimated using the commercial ADCP as a proof-of-concept. Specifically, the temporal variations in the backscattering strength and the duration of bubble existence were quantitatively evaluated. Additionally, the PDSL (population density spectrum level) and VF (void fraction) of the artificial bubbles were characterized based on the obtained distribution characteristics using a PDPA (phase Doppler particle analyzer).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914940 | PMC |
http://dx.doi.org/10.3390/s22051812 | DOI Listing |
Materials (Basel)
December 2024
Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea.
Titanium (Ti) and its alloys are used in various applications, including aircraft frames, ship parts, heat exchangers, and evaporator tubes, because of their extraordinary properties, such as high specific strength, excellent corrosion resistance at high temperatures, good castability, and weldability. Plastic deformation plays a crucial role in securing the appropriate microstructure and strength of Ti and alloys in these applications. The rolling process, one of the most useful methods for plastic deformation, causes efficient deformation inside the materials, resulting in grain refinement, dislocation slip, and twinning.
View Article and Find Full Text PDFMicron
December 2024
Department of Chemical and Materials Engineering, The University of Auckland, New Zealand. Electronic address:
This study investigates the effect of pre-deformation by cold rolling after solution annealing on the microstructure and properties of the fine-grained Al-Li alloy 2A97. Electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize grain boundaries, dislocations, precipitates and calculate their contribution to strength. It is found that the changes in precipitation behavior predominantly account for the enhanced tensile properties observed in the deformed alloys, where yield and tensile strengths are increased by 85 MPa and 63 MPa, respectively.
View Article and Find Full Text PDFBiomed Mater
December 2024
State Key Laboratory of Nuclear Physics and Technology, Department of Technical Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China.
Titanium (Ti), characterized by its exceptional mechanical properties, commendable corrosion resistance and biocompatibility, has emerged as the principal functional materials for implants in biomedical and clinical applications. However, the Ti-6Al-4V (TC4ELI) alloy has cytotoxicity risks, whereas the strength of the existing industrially pure titanium TA4 is marginally inadequate and will significantly limit the scenarios of medical implants. Herein, we prepared ultrafine-grained industrial-grade pure titanium TA4 and titanium alloy TC4ELI via the equal channel angular pressing method, in which the TA4-1 sample has ultrahigh strength of 1.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China.
Understanding the enhancing mechanisms of graphene oxide (GO) on the pore structure characteristics in the interfacial transition zone (ITZ) plays a crucial role in cemented waste rock backfill (CWRB) nanoreinforcement. In the present work, an innovative method based on metal intrusion techniques, backscattered electron (BSE) images, and deep learning is proposed to analyze the micro/nanoscale characteristics of microstructures in the GO-enhanced ITZ. The results showed that the addition of GO reduced the interpore connectivity and the porosity at different pore throats by 53.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Guizhou Aerospace Precision Products Co., Ltd., Zunyi 563006, China.
Surface roughening (SR) has been found to occur in solid solution 2219 aluminum alloy under tensile deformation, which will deteriorate its surface quality. To make a precise study of the surface roughening (SR) behavior and mechanism, the surface morphology of annealed and solid solution 2219 aluminum alloy was compared and crystal plasticity finite element (CPFE) simulation was carried out in this study. Thereinto, representative volume element (RVE) models of polycrystals were established according to the initial grain morphology measured by electron backscatter diffraction (EBSD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!