Novel Improved Salp Swarm Algorithm: An Application for Feature Selection.

Sensors (Basel)

Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia.

Published: February 2022

We live in a period when smart devices gather a large amount of data from a variety of sensors and it is often the case that decisions are taken based on them in a more or less autonomous manner. Still, many of the inputs do not prove to be essential in the decision-making process; hence, it is of utmost importance to find the means of eliminating the noise and concentrating on the most influential attributes. In this sense, we put forward a method based on the swarm intelligence paradigm for extracting the most important features from several datasets. The thematic of this paper is a novel implementation of an algorithm from the swarm intelligence branch of the machine learning domain for improving feature selection. The combination of machine learning with the metaheuristic approaches has recently created a new branch of artificial intelligence called learnheuristics. This approach benefits both from the capability of feature selection to find the solutions that most impact on accuracy and performance, as well as the well known characteristic of swarm intelligence algorithms to efficiently comb through a large search space of solutions. The latter is used as a wrapper method in feature selection and the improvements are significant. In this paper, a modified version of the salp swarm algorithm for feature selection is proposed. This solution is verified by 21 datasets with the classification model of K-nearest neighborhoods. Furthermore, the performance of the algorithm is compared to the best algorithms with the same test setup resulting in better number of features and classification accuracy for the proposed solution. Therefore, the proposed method tackles feature selection and demonstrates its success with many benchmark datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914736PMC
http://dx.doi.org/10.3390/s22051711DOI Listing

Publication Analysis

Top Keywords

feature selection
24
swarm intelligence
12
salp swarm
8
swarm algorithm
8
machine learning
8
proposed solution
8
feature
6
selection
6
swarm
5
novel improved
4

Similar Publications

Background: In the last years, artificial intelligence (AI) has contributed to improving healthcare including dentistry. The objective of this study was to develop a machine learning (ML) model for early childhood caries (ECC) prediction by identifying crucial health behaviours within mother-child pairs.

Methods: For the analysis, we utilized a representative sample of 724 mothers with children under six years in Bangladesh.

View Article and Find Full Text PDF

Purpose: We used knowledge discovery from radiomics of T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (T1C) for assessing relapse risk in patients with high-grade meningiomas (HGMs).

Methods: 279 features were extracted from each ROI including 9 histogram features, 220 Gy-level co-occurrence matrix features, 20 Gy-level run-length matrix features, 5 auto-regressive model features, 20 wavelets transform features and 5 absolute gradient statistics features. The datasets were randomly divided into two groups, the training set (~ 70%) and the test set (~ 30%).

View Article and Find Full Text PDF

This study addresses the limited noninvasive tools for Head and Neck Squamous Cell Carcinoma (HNSCC) progression-free survival (PFS) prediction by identifying Computed Tomography (CT)-based biomarkers for predicting prognosis. A retrospective analysis was conducted on data from 203 HNSCC patients. An ensemble feature selection involving correlation analysis, univariate survival analysis, best-subset selection, and the LASSO-Cox algorithm was used to select functional features, which were then used to build final Cox Proportional Hazards models (CPH).

View Article and Find Full Text PDF

A hybrid machine learning approach for the personalized prognostication of aggressive skin cancers.

NPJ Digit Med

January 2025

Mike Toth Head and Neck Cancer Research Center, Division of Surgical Oncology, Department of Otolaryngology-Head and Neck Surgery, Mass Eye and Ear, Boston, MA, USA.

Accurate prognostication guides optimal clinical management in skin cancer. Merkel cell carcinoma (MCC) is the most aggressive form of skin cancer that often presents in advanced stages and is associated with poor survival rates. There are no personalized prognostic tools in use in MCC.

View Article and Find Full Text PDF

Missense variants that change the amino acid sequences of proteins cause one-third of human genetic diseases. Tens of millions of missense variants exist in the current human population, and the vast majority of these have unknown functional consequences. Here we present a large-scale experimental analysis of human missense variants across many different proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!