Old leachate normally has a low organic compound content, poor biodegradability and is hard to biologically treat. The efficacy of tetravalent metal salts as a coagulant and the application of a natural coagulant as a flocculant in landfill leachate treatment is still inconclusive. Hence, this study aimed to evaluate the potential application of tin tetrachloride (SnCl) as the main coagulant and the rubber seed () (RS) as the natural coagulant aid as the sole treatment in eradicating highly coloured and turbid stabilised landfill leachate present at one of the old local landfills in Malaysia. The standard jar test conducted revealed that SnCl was able to eliminate 99% and 97.3% of suspended solids (SS) and colour, respectively, at pH8, with 10,000 mg/L dosages, an average particle size of 2419 d·nm, and a zeta potential (ZP) of -0.4 mV. However, RS was found to be ineffective as the main coagulant and could only remove 46.7% of SS and 76.5% of colour at pH3 with 6000 mg/L dosages, and also exhibited smaller particles (933 d·nm) with ZP values of -6.3 mV. When used as a coagulant aid, the polymer bridging mechanism in RS helped in reducing the SnCl concentration from 10,000 mg/L to 8000 mg/L by maintaining the same performances. The presence of 1000 mg/L RS as a coagulant aid was able to remove 100% of SS and 97.6% of colour. The study concluded that RS has the potential to be used together with SnCl in treating concentrated leachate with SS and colour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910293 | PMC |
http://dx.doi.org/10.3390/ijerph19053016 | DOI Listing |
Birth Defects Res
January 2025
Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA.
Background: Epidemiological studies report associations of drinking water disinfection byproducts (DBPs) with adverse health outcomes, including birth defects. Here, we used a rat model susceptible to pregnancy loss (full-litter resorption; FLR) and eye malformations (anophthalmia, microphthalmia) to test 11 DBPs, including trihalomethanes, haloacetic acids (HAAs), and nitrogen-containing DBPs (N-DBPs).
Methods: Timed-pregnant F344 rats received gavage doses of chloroform, chlorodibromomethane, iodoform, chloroacetic acid, bromoacetic acid, dibromoacetic acid (DBA), diiodoacetic acid (DIA), trichloroacetic acid (TCA), dibromonitromethane, and iodoacetonitrile on gestation days (GD) 6-10.
Environ Monit Assess
January 2025
Sinopec Offshore Oilfield Services Company, Shanghai, 201208, China.
The concentration of trace elements in sediments is a critical element in the quality of nearshore environments. Geochemical background values are the normal concentrations of trace elements in the natural environment, and the use of different background values has resulted in different evaluations. Trace element (Cu, Pb, Zn, Cr, Cd, As, and Hg) concentration profiles along a sediment core were investigated to obtain background values and to assess the depositional processes and contamination levels in Laizhou Bay.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland.
Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
The modern world is facing the issue of emerging pollutants for its sustainable development. We report a detailed study on the abatement of ciprofloxacin (CIP) by BeO nanocage. Five different geometries of BeO nanocage with CIP i.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134.
Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!