The large availability of both air pollution and COVID-19 data, and the simplicity to make geographical correlations between them, led to a proliferation of ecological studies relating the levels of pollution in administrative areas to COVID-19 incidence, mortality or lethality rates. However, the major drawback of these studies is the ecological fallacy that can lead to spurious associations. In this frame, an increasing concern has been addressed to clarify the possible role of contextual variables such as municipalities' characteristics (including urban, rural, semi-rural settings), those of the resident communities, the network of social relations, the mobility of people, and the responsiveness of the National Health Service (NHS), to better clarify the dynamics of the phenomenon. The objective of this paper is to identify and collect the municipalities' and community contextual factors and to synthesize their information content to produce suitable indicators in national environmental epidemiological studies, with specific emphasis on assessing the possible role of air pollution on the incidence and severity of the COVID-19 disease. A first step was to synthesize the content of spatial information, available at the municipal level, in a smaller set of "summary indexes" that can be more easily viewed and analyzed. For the 7903 Italian municipalities (1 January 2020-ISTAT), 44 variables were identified, collected, and grouped into five information dimensions a priori defined: (i) geographic characteristics of the municipality, (ii) demographic and anthropogenic characteristics, (iii) mobility, (iv) socio-economic-health area, and (v) healthcare offer (source: ISTAT, EUROSTAT or Ministry of Health, and further ad hoc elaborations (e.g., OpenStreetMaps)). Principal component analysis (PCA) was carried out for the five identified dimensions, with the aim of reducing the large number of initial variables into a smaller number of components, limiting as much as possible the loss of information content (variability). We also included in the analysis PM, PM and NO population weighted exposure (PWE) values obtained using a four-stage approach based on the machine learning method, "random forest", which uses space-time predictors, satellite data, and air quality monitoring data estimated at the national level. Overall, the PCA made it possible to extract twelve components: three for the territorial characteristics dimension of the municipality (variance explained 72%), two for the demographic and anthropogenic characteristics dimension (variance explained 62%), three for the mobility dimension (variance explained 83%), two for the socio-economic-health sector (variance explained 58%) and two for the health offer dimension (variance explained 72%). All the components of the different dimensions are only marginally correlated with each other, demonstrating their potential ability to grasp different aspects of the spatial distribution of the COVID-19 pathology. This work provides a national repository of contextual variables at the municipality level collapsed into twelve informative factors suitable to be used in studies on the association between chronic exposure to air pollution and COVID-19 pathology, as well as for investigations on the role of air pollution on the health of the Italian population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910469 | PMC |
http://dx.doi.org/10.3390/ijerph19052859 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114.
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medical Sciences, Cancer Epidemiology Unit, University of Turin and CPO-Piemonte, Turin, Italy.
Objectives: Maternal occupational exposures during early pregnancy can be detrimental to foetus health and have short- and long-term health effects on the child. This study examined their association with adverse birth outcomes.
Methods: The study included 3938 nulliparous women from the Italian NINFEA mother-child cohort.
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.
View Article and Find Full Text PDFInt J Biometeorol
January 2025
Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China.
Air pollution remains a significant threat to human health and economic development. Most previous studies have examined the health effects of individual pollutants, which often overlook the combined impacts of multiple pollutants. The traditional composite indicator air quality index (AQI) only focuses on the major pollutants, whereas the health risk-based air quality index (HAQI) could offer a more comprehensive evaluation of the health effects of various pollutants on populations.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
International Joint Research Center For Green Energy and Chemical Industry, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
Escalating SOx and NOx emissions from industrial plants necessitates customized scrubbing solutions to improve removal efficiency and tackle cost limitations in existing wet FGD units. This work investigates the real-time intensified removal pathways via an innovative two-stage countercurrent spray tower configuration strategically integrating NaOH (M) and NaOH/NaClO (M/M) to remove SOx and NOx emissions simultaneously from the industrial stack through a comprehensive parametric study of absorbents concentration, reaction temperature, gas flow rate, liquid to gas ratio (F/F), and absorbent showering head. Flue gas stream comprising SO bearing 4500 ppm, SO bearing 300 ppm, 70 ppm NO, and 50 ppm NO brought into contact with two scrubbing solutions as M, and a complex absorbent of M/M at varying respective ratios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!