Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The accumulation of anthropogenic heavy metals in soil is a major form of pollution. Such potentially toxic elements are nonbiodegradable and persist for many years as threats to human and environmental health. Traditional forms of remediation are costly and potentially damaging to the land. An alternative strategy is phytoremediation, where plants are used to capture metals from the environment. Industrial hemp () is a promising candidate for phytoremediation. Hemp has deep roots and is tolerant to the accumulation of different metals. In addition, the crop biomass has many potential commercial uses after harvesting is completed. Furthermore, the recent availability of an annotated genome sequence provides a powerful tool for the bioengineering of for better phytoremediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912475 | PMC |
http://dx.doi.org/10.3390/plants11050595 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!