Molecular hydrogen ameliorates pathological states in a variety of human diseases, animal models, and cell models, but the effects of hydrogen on cancer have been rarely reported. In addition, the molecular mechanisms underlying the effects of hydrogen remain mostly unelucidated. We found that hydrogen enhances proliferation of four out of seven human cancer cell lines (the responders). The proliferation-promoting effects were not correlated with basal levels of cellular reactive oxygen species. Expression profiling of the seven cells showed that the responders have higher gene expression of mitochondrial electron transport chain (ETC) molecules than the non-responders. In addition, the responders have higher mitochondrial mass, higher mitochondrial superoxide, higher mitochondrial membrane potential, and higher mitochondrial spare respiratory capacity than the non-responders. In the responders, hydrogen provoked mitochondrial unfolded protein response (mtUPR). Suppression of cell proliferation by rotenone, an inhibitor of mitochondrial ETC complex I, was rescued by hydrogen in the responders. Hydrogen triggers mtUPR and induces cell proliferation in cancer cells that have high basal and spare mitochondrial ETC activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910898PMC
http://dx.doi.org/10.3390/ijms23052888DOI Listing

Publication Analysis

Top Keywords

higher mitochondrial
16
mitochondrial
9
molecular hydrogen
8
hydrogen enhances
8
enhances proliferation
8
proliferation cancer
8
cancer cells
8
mitochondrial unfolded
8
unfolded protein
8
protein response
8

Similar Publications

Rheumatoid arthritis (RA) is a chronic autoimmune disorder associated with an increased risk of cardiovascular disease (CVD), largely driven by peripheral endothelial dysfunction (ED). Humanin, a mitochondrial-derived peptide, has been suggested to play a protective role in endothelial function. However, the relationship between Humanin levels and ED in RA, as well as the interaction between Humanin and non-coding RNAs such as Long Non-Coding RNA GAS5, microRNA-21 (miR-21), and microRNA-103 (miR-103), remains unclear.

View Article and Find Full Text PDF

Background: This study examines the impact of Phα1β, a spider peptide derived from the venom of , on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways.

View Article and Find Full Text PDF

Antibodies directed against bacterial antigens in sera of Polish patients with primary biliary cholangitis.

Front Cell Infect Microbiol

January 2025

Clinic of Polish Gastroenterology Foundation, Warsaw, Poland.

Background: Primary biliary cholangitis (PBC) is a cholestatic, autoimmune liver disease with the presence of characteristic autoantibodies. The aim of the work was to determine the level of antibodies directed against bacterial antigens: (anti-anti), (anti-), (anti- ) and () in sera of PBC patients. We also performed studies on the impact of the bacterial peptides on the specific antigen-antibody binding.

View Article and Find Full Text PDF

Ergothioneine improves healthspan of aged animals by enhancing cGPDH activity through CSE-dependent persulfidation.

Cell Metab

January 2025

Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany; School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. Electronic address:

Ergothioneine (ET), a dietary thione/thiol, is receiving growing attention for its possible benefits in healthy aging and metabolic resilience. Our study investigates ET's effects on healthspan in aged animals, revealing lifespan extension and enhanced mobility in Caenorhabditis elegans, accompanied by improved stress resistance and reduced age-associated biomarkers. In aged rats, ET administration enhances exercise endurance, muscle mass, and vascularization, concomitant with higher NAD levels in muscle.

View Article and Find Full Text PDF

Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration.

Mol Cell Biochem

January 2025

State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.

Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!