CMV is a major cause of morbidity and mortality in immunocompromised individuals that will benefit from the availability of a vaccine. Despite the efforts made during the last decade, no CMV vaccine is available. An ideal CMV vaccine should elicit a broad immune response against multiple viral antigens including proteins involved in virus-cell interaction and entry. However, the therapeutic use of neutralizing antibodies targeting glycoproteins involved in viral entry achieved only partial protection against infection. In this scenario, a better understanding of the CMV proteome potentially involved in viral entry may provide novel candidates to include in new potential vaccine design. In this study, we aimed to explore the CMV genome to identify proteins with putative transmembrane domains to identify new potential viral envelope proteins. We have performed in silico analysis using the genome sequences of nine different CMV strains to predict the transmembrane domains of the encoded proteins. We have identified 77 proteins with transmembrane domains, 39 of which were present in all the strains and were highly conserved. Among the core proteins, 17 of them such as UL10, UL139 or US33A have no ascribed function and may be good candidates for further mechanistic studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911422PMC
http://dx.doi.org/10.3390/ijms23052768DOI Listing

Publication Analysis

Top Keywords

transmembrane domains
12
cmv vaccine
8
involved viral
8
viral entry
8
cmv
6
proteins
6
deciphering potential
4
potential coding
4
coding human
4
human cytomegalovirus
4

Similar Publications

Adenosine triphosphate (ATP) synthases are large enzymes present in every living cell. They consist of a transmembrane and a soluble domain, each comprising multiple subunits. The transmembrane part contains an oligomeric rotor ring (c-ring), whose stoichiometry defines the ratio between the number of synthesized ATP molecules and the number of ions transported through the membrane.

View Article and Find Full Text PDF

Unlabelled: Although fish possess an effective interferon (IFN) system to defend against viral infection, grass carp reovirus (GCRV) still causes epidemic hemorrhagic disease and tremendous economic loss in grass carp. Therefore, it is necessary to investigate the immune escape strategies employed by GCRV. In this study, we show that the structural protein VP4 of GCRV (encoded by the S6 segment) significantly restricts IFN expression by degrading stimulator of IFN genes (STING) through the autophagy-lysosome-dependent pathway.

View Article and Find Full Text PDF

Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.

View Article and Find Full Text PDF

ABCB1 is a broad-spectrum efflux pump central to cellular drug handling and multidrug resistance in humans. However, how it is able to recognize and transport a wide range of diverse substrates remains poorly understood. Here we present cryo-EM structures of lipid-embedded human ABCB1 in conformationally distinct apo-, substrate-bound, inhibitor-bound, and nucleotide-trapped states at 3.

View Article and Find Full Text PDF

The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!