The Molecular Basis of FIX Deficiency in Hemophilia B.

Int J Mol Sci

Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.

Published: March 2022

AI Article Synopsis

Article Abstract

Coagulation factor IX (FIX) is a vitamin K dependent protein and its deficiency causes hemophilia B, an X-linked recessive bleeding disorder. More than 1000 mutations in the gene have been identified in hemophilia B patients. Here, we systematically summarize the structural and functional characteristics of FIX and the pathogenic mechanisms of the mutations that have been identified to date. The mechanisms of FIX deficiency are diverse in these mutations. Deletions, insertions, duplications, and indels generally lead to severe hemophilia B. Those in the exon regions generate either frame shift or inframe mutations, and those in the introns usually cause aberrant splicing. Regarding point mutations, the bleeding phenotypes vary from severe to mild in hemophilia B patients. Generally speaking, point mutations in the promoter region result in hemophilia B Leyden, and those in the introns cause aberrant splicing. Point mutations in the coding sequence can be missense, nonsense, or silent mutations. Nonsense mutations generate truncated FIX that usually loses function, causing severe hemophilia B. Silent mutations may lead to aberrant splicing or affect FIX translation. The mechanisms of missense mutation, however, have not been fully understood. They lead to FIX deficiency, often by affecting FIX's translation, protein folding, protein stability, posttranslational modifications, activation to FIXa, or the ability to form functional Xase complex. Understanding the molecular mechanisms of FIX deficiency will provide significant insight for patient diagnosis and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911121PMC
http://dx.doi.org/10.3390/ijms23052762DOI Listing

Publication Analysis

Top Keywords

aberrant splicing
12
point mutations
12
mutations
10
deficiency hemophilia
8
hemophilia patients
8
mechanisms deficiency
8
severe hemophilia
8
introns aberrant
8
splicing point
8
silent mutations
8

Similar Publications

Dynamics and regulatory roles of RNA mA methylation in unbalanced genomes.

Elife

January 2025

Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.

-methyladenosine (mA) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of mA components appears in a variety of human diseases. RNA mA modification in has proven to be involved in sex determination regulated by and may affect X chromosome expression through the MSL complex.

View Article and Find Full Text PDF

Alternative splicing of EZH2 regulated by SNRPB mediates hepatocellular carcinoma progression via BMP2 signaling pathway.

iScience

January 2025

Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.

Increasing evidence suggests that aberrant alternative splicing plays crucial roles in tumorigenesis. However, the function of EZH2 splice variants as well as the mechanism by which EZH2 alternative splicing occurs in hepatocellular carcinoma (HCC) remain elusive. Here, we analyzed both our own and published transcriptomic data, obtaining 19 splice variants of EZH2 in addition to canonical full-length EZH2-A in HCC.

View Article and Find Full Text PDF

Background: Stargardt disease type 1 (STGD1) is a progressive retinal disorder caused by bi-allelic variants in the ABCA4 gene. A recurrent variant at the exon-intron junction of exon 6, c.768G>T, causes a 35-nt elongation of exon 6 that leads to premature termination of protein synthesis.

View Article and Find Full Text PDF

Breast cancer (BrCa) is a complex and heterogeneous disease with diverse molecular subtypes, leading to varied clinical outcomes and posing significant treatment challenges. The increasing global burden of BrCa, particularly in low- and middle-income countries, underscores the urgent need for more effective therapeutic strategies. The androgen receptor (AR), expressed in a substantial proportion of breast cancer cases, has emerged as a potential biomarker and therapeutic target.

View Article and Find Full Text PDF

Intron removal during pre-mRNA splicing is of extraordinary complexity and its disruption causes a vast number of genetic diseases in humans. While key steps of the canonical spliceosome cycle have been revealed by combined structure-function analyses, structural information on an aberrant spliceosome committed to premature disassembly is not available. Here, we report two cryo-electron microscopy structures of post-B spliceosome intermediates from Schizosaccharomyces pombe primed for disassembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!