Anisotropic Elasticity of the Myosin Motor in Muscle.

Int J Mol Sci

PhysioLab, Università di Firenze, 50019 Sesto Fiorentino, Italy.

Published: February 2022

AI Article Synopsis

Article Abstract

To define the mechanics and energetics of the myosin motor action in muscles, it is mandatory to know fundamental parameters such as the stiffness and the force of the single myosin motor, and the fraction of motors attached during contraction. These parameters can be defined in situ using sarcomere-level mechanics in single muscle fibers under the assumption that the stiffness of a myosin dimer with both motors attached (as occurs in rigor, when all motors are attached) is twice that of a single motor (as occurs in the isometric contraction). We use a mechanical/structural model to identify the constraints that underpin the stiffness of the myosin dimer with both motors attached to actin. By comparing the results of the model with the data in the literature, we conclude that the two-fold axial stiffness of the dimers with both motors attached is justified by a stiffness of the myosin motor that is anisotropic and higher along the axis of the myofilaments. A lower azimuthal stiffness of the motor plays an important role in the complex architecture of the sarcomere by allowing the motors to attach to actin filaments at different azimuthal angles relative to the thick filament.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909946PMC
http://dx.doi.org/10.3390/ijms23052566DOI Listing

Publication Analysis

Top Keywords

motors attached
20
myosin motor
16
stiffness myosin
12
myosin dimer
8
dimer motors
8
myosin
6
motor
6
stiffness
6
motors
6
attached
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!