Glioma is the most common primary intracranial tumor and has the greatest prevalence of all brain tumors. Treatment resistance and tumor recurrence in GBM are mostly explained by considerable alterations within the tumor microenvironment, as well as extraordinary cellular and molecular heterogeneity. Soluble factors, extracellular matrix components, tissue-resident cell types, resident or newly recruited immune cells together make up the GBM microenvironment. Regardless of many immune cells, a profound state of tumor immunosuppression is supported and developed, posing a considerable hurdle to cancer cells' immune-mediated destruction. Several studies have suggested that various GBM subtypes present different modifications in their microenvironment, although the importance of the microenvironment in treatment response has yet to be determined. Understanding the microenvironment and how it changes after therapies is critical because it can influence the remaining invasive GSCs and lead to recurrence. This review article sheds light on the various components of the GBM microenvironment and their roles in tumoral development, as well as immune-related biological processes that support the interconnection/interrelationship between different cell types. Also, we summarize the current understanding of the modulation of soluble factors and highlight the dysregulated inflammatory chemokine/specific receptors cascades/networks and their significance in tumorigenesis, cancer-related inflammation, and metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910233 | PMC |
http://dx.doi.org/10.3390/ijms23052509 | DOI Listing |
J Interferon Cytokine Res
January 2025
Gansu University of Traditional Chinese Medicine, Lanzhou, China.
Interferon-gamma (IFN-γ) is an important cytokine associated with antitumor immunity and has been implicated in the pathogenesis and progression of lung cancer. Nevertheless, no bibliometric analyses have been published in this field to date, and thus we aim to address this gap in knowledge. A search of the Web of Science (WOS) for literature related to the treatment of lung cancer with IFN-γ was conducted from 2002 to 2024.
View Article and Find Full Text PDFHepatology
January 2025
The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.
ACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFPLoS One
January 2025
Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Toll-like receptor (TLRs) activation in multiple myeloma (MM) cells induces heterogeneous functional responses including cell growth and proliferation, survival or apoptosis. These effects have been suggested to be partly due to increase in secretion of cytokines such as IL-6 or IFNα among others from MM cells following TLR activation. However, whether triggering of these receptors also modulates production of immunoglobulin free light chains (FLCs), which largely contribute to MM pathology, has not been investigated in MM cells before.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Research Center for Vaccine and Drugs, The National Research and Innovation Agency (BRIN), South Tangerang 15310, Indonesia.
Objective: The progress made in cancer immunology has led to the development of innovative therapeutic strategies. However, despite these advances, the superficial characteristics of immune cells have been frequently overlooked: This oversight may be attributed to a limited understanding of the intricate relationships between immune cells and their microenvironment. This study seeks to address this limitation by comprehensively examining cell size and granularity in breast cancer (BC) patients and healthy donors (HD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!