Stress-induced phosphoprotein-1 (STIP1)-a heat shock protein (HSP)70/HSP90 adaptor protein-is commonly overexpressed in malignant cells, where it controls proliferation via multiple signaling pathways, including JAK2/STAT3. We have previously shown that STIP1 stabilizes the protein tyrosine kinase JAK2 in cancer cells via HSP90 binding. In this study, we demonstrate that STIP1 may act as a substrate for JAK2 and that phosphorylation of tyrosine residues 134 and 152 promoted STIP1 protein stability, induced its nuclear-cytoplasmic shuttling, and promoted its secretion into the extracellular space. We also found that JAK2-mediated STIP1 phosphorylation enhanced cell viability and increased resistance to cisplatin-induced cell death. Conversely, interference STIP1 with JAK2 interaction-attained either through site-directed mutagenesis or the use of cell-penetrating peptides-decreased JAK2 protein levels, ultimately leading to cell death. On analyzing human ovarian cancer specimens, JAK2 and STIP1 expression levels were found to be positively correlated with each other. Collectively, these results indicate that JAK2-mediated phosphorylation of STIP-1 is critical for sustaining the JAK2/STAT3 signaling pathway in cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910420PMC
http://dx.doi.org/10.3390/ijms23052420DOI Listing

Publication Analysis

Top Keywords

jak2-mediated phosphorylation
8
stress-induced phosphoprotein-1
8
cancer cells
8
cell death
8
stip1
7
jak2
5
phosphorylation stress-induced
4
phosphoprotein-1 stip1
4
stip1 human
4
cells
4

Similar Publications

Targeting KRAS-mutant pancreatic cancer through simultaneous inhibition of KRAS, MEK, and JAK2.

Mol Oncol

October 2024

Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan.

Article Synopsis
  • The KRAS oncogene was previously deemed "undruggable," but the KRAS inhibitors sotorasib and MRTX1133 have shown promising results for lung cancers, while MRTX1133 is less effective for pancreatic cancer when used alone.
  • Researchers discovered that these KRAS inhibitors increase certain cellular signals (STAT3 and ERK), which could lead to cancer resistance.
  • Combining KRAS inhibitors with MEK and JAK2 inhibitors (like trametinib and fedratinib) could enhance treatment outcomes and tackle resistance in KRAS-mutant pancreatic cancer effectively.
View Article and Find Full Text PDF

Tyrosine-protein kinase (janus kinase; JAK)-signal transducer and activator of transcription (STAT) signaling plays a pivotal role in the development of myeloproliferative neoplasms (MPNs). Treatment with the potent JAK1/JAK2-specific inhibitor, ruxolitinib, significantly reduces tumor burden; however, ruxolitinib treatment does not fully eradicate the malignant clone. As the molecular basis for the disease persistence is not well understood, we set out to gain new insights by generating ruxolitinib-resistant cell lines.

View Article and Find Full Text PDF

Inflammation plays an important role in the initiation and progression of colorectal cancer (CRC) and leads to β-catenin accumulation in colitis-related CRC. However, the mechanism remains largely unknown. Here, pancreatic progenitor cell differentiation and proliferation factor (PPDPF) is found to be upregulated in CRC and significantly correlated with tumor-node-metastasis (TNM) stages and survival time.

View Article and Find Full Text PDF

JAK2 rearrangements can occur in Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL). Here, we performed functional analysis of the SPAG9::JAK2 fusion, which was identified in a pediatric patient with Ph-like ALL, to establish molecular targeted therapy. Ba/F3 cells expressing SPAG9::JAK2 generated by retroviral transduction (Ba/F3-SPAG9-JAK2), proliferated in the absence of IL-3, and exhibited constitutive phosphorylation of the tyrosine residues in the JAK2 kinase domain of the fusion protein and STAT3/STAT5.

View Article and Find Full Text PDF

T helper 1 (Th1) immunity is typically viewed as a critical adaptation by vertebrates against intracellular pathogens. Identifying novel targets to enhance Th1 cell differentiation and function is increasingly important for anti-infection immunity. Here, through small-molecule screening focusing on epigenetic modifiers during the in vitro Th1 cell differentiation process, we identified that the selective histone deacetylase 6 (HDAC6) inhibitors ricolinostat and nexturastat A (Nex A) promoted Th1 cell differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!