Little is known about the rising impacts of Coriolis force and volume fraction of nanoparticles in industrial, mechanical, and biological domains, with an emphasis on water conveying 47 nm nanoparticles of alumina nanoparticles. We explored the impact of the volume fraction and rotation parameter on water conveying 47 nm of alumina nanoparticles across a uniform surface in this study. The Levenberg-Marquardt backpropagated neural network (LMB-NN) architecture was used to examine the transport phenomena of 47 nm conveying nanoparticles. The partial differential equations (PDEs) are converted into a system of Ordinary Differential Equations (ODEs). To assess our soft-computing process, we used the RK4 method to acquire reference solutions. The problem is investigated using two situations, each with three sub-cases for the change of the rotation parameter K and the volume fraction ϕ. Our simulation results are compared to the reference solutions. It has been proven that our technique is superior to the current state-of-the-art. For further explanation, error histograms, regression graphs, and fitness values are graphically displayed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912297PMC
http://dx.doi.org/10.3390/nano12050878DOI Listing

Publication Analysis

Top Keywords

volume fraction
12
nanoparticles alumina
8
uniform surface
8
water conveying
8
conveying nanoparticles
8
alumina nanoparticles
8
rotation parameter
8
differential equations
8
reference solutions
8
nanoparticles
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!