In this article, the behavior of transient electroviscous fluid flow is investigated through squeezing plates containing hybrid nanoparticles. A hybrid nanofluid MoS2+Au/C2H6O2-H2O was formulated by dissolving the components of an inorganic substance such as molybdenum disulfide (MoS2) and gold (Au) in a base fluid of ethylene glycol/water. This hybrid non-liquid flow was modeled by various nonlinear mathematical fluid flow models and subsequently solved by numerical as well as analytical methods. For the numerical solution of nonlinear ODEs, a built-in function BVP4C was used in MATLAB, and the same problem was solved in MATHEMATICA by HAM. The result of the present problem related to the results obtained from the existing literature under certain conditions. The outcomes revealed that the concentration profiles were more sensitive to homogeneity diversity parameters. The simulation of the various physical parameters of the model indicated that the heat transfer through a mixture of hybrid nanofluids was greater than a simple nanofluid. In addition, the phenomenon of mixed convection was considered to improve the velocity of simple nanofluids and hybrid nanofluids, when both cases have low permeability. A rise in the volume fraction of the nanomaterials, Φ, was associated with an increase in the heat transfer rate. It was observed that the heat transfer rate of the hybrid nanofluids MoS2+Au/C2H6O2-H2O was higher than that of the single nanofluids MoS2/C2H6O2-H2O.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912341PMC
http://dx.doi.org/10.3390/nano12050876DOI Listing

Publication Analysis

Top Keywords

heat transfer
12
hybrid nanofluids
12
hybrid nanofluid
8
squeezing plates
8
fluid flow
8
transfer rate
8
hybrid
7
nanofluids
5
numerical simulation
4
simulation time-dependent
4

Similar Publications

Dry ice is one of the world's most in-demand commodities for cold-chain distribution of temperature-sensitive products. It offers an effective cooling solution without requiring mechanical refrigeration or specialized equipment. Dry ice is commonly produced as pellets and blocks.

View Article and Find Full Text PDF

Hot carrier dynamics in the BAPbBr/MoS heterostructure.

Nanoscale

January 2025

Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.

Herein, we investigated the carrier-phonon relaxation process in a two-dimensional (2D) BAPbBr perovskite and its heterostructure with MoS. Energy transfer was observed in the van der Waals heterostructure of 2D perovskite and monolayer MoS, leading to enhancement in the photoluminescence intensity of MoS. Femtosecond pump-probe spectroscopy was used to study the carrier and lattice dynamics of pristine 2D materials and their heterostructure.

View Article and Find Full Text PDF

Thermal Analysis of Electromagnetic Induction Heating for Cylinder-Shaped Objects.

Electrophoresis

January 2025

School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA.

Induction heating is one of the cleanest and most efficient methods for heating materials, utilizing electromagnetic fields induced through AC electric current. This article reports an analytical solution for transient heat transfer in a three-dimensional (3D) cylindrical object under induction heating. A simplified form of Maxwell's equations is solved to determine the heat generation inside the cylinder by calculating the current density distribution within the body.

View Article and Find Full Text PDF

We introduce donor-acceptor substituted anthracenes as effective molecular solar thermal energy storage compounds that operate exclusively in the solid state. The donor-acceptor anthracenes undergo visible light-induced [4+4] cycloaddition reaction, producing metastable cycloadducts, dianthracenes with quaternary carbons, and storing photon energy. The triggered cycloreversion of dianthracenes to anthracenes discharges the stored energy as heat in the order of 100 kJ/mol (200 J/g).

View Article and Find Full Text PDF

Since the initial publication on the first TiCT MXene in 2011, there has been a significant increase in the number of reports on applications of MXenes in various domains. MXenes have emerged as highly promising materials for various biomedical applications, including photothermal therapy (PTT), drug delivery, diagnostic imaging, and biosensing, owing to their fascinating conductivity, mechanical strength, biocompatibility and hydrophilicity. Through surface modification, MXenes can mitigate cytotoxicity, enhance biological stability, and improve histocompatibility, thereby enabling their potential use in biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!