Hydrophilic surface-enhanced Raman spectroscopy (SERS) substrates were prepared by a combination of TiO-coatings of aluminium plates through a direct titanium tetraisopropoxide (TTIP) coating and drop coated by synthesised gold nanoparticles (AuNPs). Differences between the wettability of the untreated substrates, the slowly dried Ti(OH) substrates and calcinated as well as plasma treated TiO substrates were analysed by water contact angle (WCA) measurements. The hydrophilic behaviour of the developed substrates helped to improve the distribution of the AuNPs, which reflects in overall higher lateral SERS enhancement. Surface enhancement of the substrates was tested with target molecule rhodamine 6G (R6G) and a fibre-coupled 638 nm Raman spectrometer. Additionally, the morphology of the substrates was characterised using scanning electron microscopy (SEM) and Raman microscopy. The studies showed a reduced influence of the coffee ring effect on the particle distribution, resulting in a more broadly distributed edge region, which increased the spatial reproducibility of the measured SERS signal in the surface-enhanced Raman mapping measurements on mm scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912524PMC
http://dx.doi.org/10.3390/nano12050860DOI Listing

Publication Analysis

Top Keywords

substrates
8
sers substrates
8
coffee ring
8
surface-enhanced raman
8
development gold
4
gold nanoparticle-based
4
sers
4
nanoparticle-based sers
4
substrates tio-coating
4
tio-coating reduce
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!