In this work, a polyaniline/lead sulfide (PANI/PbS) nanocomposite was prepared by combining the in situ oxidation polymerization method and the surface adsorption process. This nanocomposite was applied as a supercapacitor electrode. The crystal structure, nanomorphology, and optical analysis of PANI and PANI/PbS were investigated. The electrochemical performance of the designed PANI/PbS electrode-based supercapacitor was tested by using cyclic voltammetry (CV), chronopotentiometry (CP), and AC impedance techniques in HCl and NaSO electrolytes. The average crystallite size of the PANI/PbS nanocomposite is about 43 nm. PANI/PbS possesses an agglomerated network related to PANI with additional spherical shapes from PbS nanoparticles. After the PANI/PbS nanocomposite formation, there are enhancements in their absorption intensities. At a current density of 0.4 A g, the specific capacitance of PANI/PbS in NaSO and HCl was found to be 303 and 625 F g, respectively. In HCl (625 F g and 1500 mF cm), the gravimetric and areal capacitances of the PANI/PbS electrode are nearly double those of the NaSO electrolyte. Also, the average specific energy and specific power density values for the PANI/PbS electrode in HCl are 4.168 Wh kg and 196.03 W kg, respectively. After 5000 cycles, the capacitance loses only 4.5% of its initial value. The results refer to the high stability and good performance of the designed PANI/PbS as a supercapacitor electrode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912390 | PMC |
http://dx.doi.org/10.3390/nano12050817 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!