A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evolutionary Analysis of Heterogeneous Granite Microcracks Based on Digital Image Processing in Grain-Block Model. | LitMetric

Evolutionary Analysis of Heterogeneous Granite Microcracks Based on Digital Image Processing in Grain-Block Model.

Materials (Basel)

Institut für Angewandte Geowissenschaften, Technische Universität Berlin, Ernst-Reuter-Platz 1, BH 3-1, 10587 Berlin, Germany.

Published: March 2022

Rocks are natural materials with a heterogeneous microstructure, and the heterogeneity of the microstructure plays a crucial role in the evolution of microcracks during the compression process. A numerical model of a rock with a heterogeneous structure under compression is developed by digital image processing techniques and the discrete element method. On the grain scale, the damage mechanism and microcrack characteristics of a heterogeneous Biotite granite under compression fracture are investigated. First, the process of constructing a digital image-based heterogeneous grain model is described. The microscopic characteristics of geometric heterogeneity, elastic heterogeneity, and contact heterogeneity are all considered in the numerical model. Then, the model is calibrated according to the macroscopic properties of biotite granite obtained in the laboratory, and the numerically simulated microcrack cracking processes and damage modes are obtained with a high degree of agreement compared to the experiments. Numerical simulations have shown the following: (1) Microcracking occurs first at the weak side of the grain boundaries, and the appearance of intragranular shear cracks indicates that the rock has reached its peak strength. (2) The stress concentration caused by the heterogeneity of the microstructure is an essential factor that causes rock cracks and induces rupture. Intragranular cracks occur successively in quartz, feldspar (plagioclase), and biotite, with far more intragranular cracks in quartz and feldspar (plagioclase) than in biotite. (3) Microcracking in quartz occurs as clusters, fork and fracture features, and in feldspar (plagioclase) it tends to cause penetration microcracking, which usually surrounds or terminates at the biotite. (4) As the confining pressure increases, the tensile break between the grains is suppressed and the number of shear cracks increases. At the macro level, the rock failure mode of the numerical model changes from split damage to shear destruction, which is consistent with the law shown in laboratory experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912085PMC
http://dx.doi.org/10.3390/ma15051941DOI Listing

Publication Analysis

Top Keywords

numerical model
12
feldspar plagioclase
12
digital image
8
image processing
8
heterogeneity microstructure
8
biotite granite
8
shear cracks
8
intragranular cracks
8
quartz feldspar
8
plagioclase biotite
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!