Novel glass samples with the composition 75TeO-5TaO-15NbO-5x (where x = ZnO, MgO, TiO, or NaO) in mole percent were prepared. The physical, optical, and gamma radiation shielding properties of the glass samples were studied over a wide energy spectrum ranging between 0.015 and 20 MeV. The glasses' UV-vis spectra were utilized to evaluate the optical energy gap and refractive index. Glass samples had a refractive index ranging from 2.2005 to 2.0967. The results showed that the sample doped with zinc oxide (ZnO) recorded the highest density (), molar polarizability (), molar refraction (), refractive index (n), and third-order nonlinear optical susceptibility (χ) and the lowest optical energy gap (E) among the samples under investigation. When comparing the current glass system with various standard glass shielding materials, the prepared glass system showed superior shielding performance at energies ranging between 40 and 85 keV. These findings indicate that the prepared glass systems can be used in diagnostic X-rays, especially in dental applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911590PMC
http://dx.doi.org/10.3390/ma15051844DOI Listing

Publication Analysis

Top Keywords

glass system
12
glass samples
12
zno mgo
8
mgo tio
8
tio nao
8
physical optical
8
radiation shielding
8
shielding properties
8
glass
8
optical energy
8

Similar Publications

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

[Cataracts extraction combined with multifocal intraocular lens optic implantation in Berger space in school-age children with cataracts].

Zhonghua Yan Ke Za Zhi

January 2025

Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao266071, China.

To evaluate the safety and efficacy of cataract extraction combined with multifocal intraocular lens (IOL) optic implantation in Berger space in school-age children with cataracts. It was a prospective study. The clinical data of school-age children with cataract who underwent cataract extraction combined with multifocal IOL implantation at Qingdao Eye Hospital of Shandong First Medical University from January 2019 to June 2023 were collected.

View Article and Find Full Text PDF

Full-color dynamic volumetric displays with tunable upconversion emission from RE-doped glasses (RE = Ho, Tm, Nd, Yb) under NIR laser excitation.

Light Sci Appl

January 2025

Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Türkiye.

Three-dimensional (3D) imaging technology holds immense potential across various high-tech applications; however, current display technologies are hindered by limitations such as restricted viewing angles, cumbersome headgear, and limited multi-user accessibility. To address these challenges, researchers are actively exploring new materials and techniques for 3D imaging. Laser-based volumetric displays (VDs) offer a promising solution; nonetheless, existing screen materials fall short in meeting key requirements for long-term durability, full-color operation, and scalability.

View Article and Find Full Text PDF

Robust low threshold full-color upconversion lasing in rare-earth activated nanocrystal-in-glass microcavity.

Light Sci Appl

January 2025

State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China.

Visible light microlasers are essential building blocks for integrated photonics. However, achieving low-threshold (μW), continuous-wave (CW) visible light lasing at room temperature (RT) has been a challenge because of the formidable requirement of population inversion at short wavelengths. Rare-earth (RE)-activated microcavities, featuring high-quality factor (Q) and small mode volume of whispering gallery modes, offer a great opportunity for achieving infrared-to-visible upconversion (UC) lasing.

View Article and Find Full Text PDF

Recycling waste glass (WG) can be time-consuming, costly, and impractical. However, its incorporation into concrete significantly reduces environmental impact and carbon emissions. This paper introduces machine learning (ML) to civil engineering to optimise WG utilisation in concrete, supporting sustainability objectives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!