Wearable energy harvesters and sensors have recently attracted significant attention with the rapid development of artificial intelligence and the Internet of Things (IoT). Compared to high-output bulk materials, these wearable devices are mainly fabricated by thin-film-based materials that limit their application. Therefore, the enhancement of output voltage and power for these devices has recently become an urgent topic. In this paper, the lead-free bismuth titanate-barium titanate (0.93(NaBi)TiO-0.07BaTiO(BNBT)) nanoparticles and nanofibers were embedded into the PVDF nanofibers. They produced high inorganic electrical voltage coefficients, high electromechanical coupling coefficients, and environmentally friendly properties that enhance the electromechanical performance of pure PVDF nanofibers, and they are all the critical requirements for modern flexible pressure sensors. In detail, PVDF and PVDF-based composites nanofibers were prepared by electrospinning, and different flexible sandwich composite devices were fabricated by the PDMS encapsulation method. As a result, the six-time enhancement maximum output voltage was obtained in a PVDF-BNBT (fiber)-based composite sensor compared to the pure PVDF one. Our results indicate that the output voltage of the pressure sensors has been significantly enhanced, and the development gate is enabled by analyzing the related physical process and influence mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911346 | PMC |
http://dx.doi.org/10.3390/ma15051769 | DOI Listing |
RSC Adv
January 2025
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China.
Leech locomotion, characterized by alternating sucker attachment and body contraction provides high adaptability and stability on complex terrains. Herein, a leech-inspired triboelectric soft robot is proposed for the first time, capable of amphibious movement, climbing, and load-carrying crawling. A high-performance triboelectric bionic robot system is developed to drive and control electro-responsive soft robots.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA.
Animals requiring purposeful movement for survival are endowed with mechanoreceptors, called proprioceptors, that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we identified nonredundant roles for two voltage-gated sodium channels (Nas), Na1.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230002, China.
LLC resonant converters have emerged as essential components in DC charging station modules, thanks to their outstanding performance attributes such as high power density, efficiency, and compact size. The stability of these converters is crucial for vehicle endurance and passenger experience, making reliability a top priority. However, malfunctions in the switching transistor or current sensor can hinder the converter's ability to maintain a resonant state and stable output voltage, leading to a notable reduction in system efficiency and output capability.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.
Permanent magnet synchronous motors (PMSMs) are widely used in a variety of fields such as aviation, aerospace, marine, and industry due to their high angular position accuracy, energy conversion efficiency, and fast response. However, driving errors caused by the non-ideal characteristics of the driver negatively affect motor control accuracy. Compensating for the errors arising from the non-ideal characteristics of the driver demonstrates substantial practical value in enhancing control accuracy, improving dynamic performance, minimizing vibration and noise, optimizing energy efficiency, and bolstering system robustness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!