This paper focuses on characterizing the evolution of warpage, effects of epoxy molding compound (EMC), and effects of carrier 2 (the second carrier in the process) of 12 inch RDL-first multi-die fan-out wafer-level packaging (FOWLP) during the manufacturing process. The linear viscoelasticity properties of EMC and polyimide (PI) were characterized using dynamic mechanical analysis (DMA) in the frequency domain at different temperatures., The elastic and viscoelastic model were used for PI and EMC, the finite element analyses (FEA) of the cured structure were carried out and the results were compared with the test results. The viscoelastic properties of the EMC in the FEA could predict the wafer warpage more accurately. The FEA and experiments were used to investigate the evolution of warpage. The molding had a great influence on the warpage. The effects of the EMC and carrier 2 were also investigated with FEA. The wafer warpage could be reduced by lowering the thickness of the EMC, increasing the thickness of carrier 2, and selecting EMC and carrier 2 with a matched coefficient of thermal expansion (CTE).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911451PMC
http://dx.doi.org/10.3390/ma15051683DOI Listing

Publication Analysis

Top Keywords

multi-die fan-out
8
fan-out wafer-level
8
wafer-level packaging
8
evolution warpage
8
warpage effects
8
properties emc
8
wafer warpage
8
emc carrier
8
emc
7
warpage
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!