A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods. | LitMetric

Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods.

Materials (Basel)

Department of Architectural and Smart Cities Engineering, Hanyang University, Ansan 15588, Korea.

Published: February 2022

The aim of this research is to recommend a set of criteria for estimating the compressive strength of concrete under marine environment with various saturation and salinity conditions. Cylindrical specimens from three different design mixtures are used as concrete samples. The specimens are subjected to different saturation levels (oven-dry, saturated-surface dry and three partially dry conditions: 25%, 50% and 75%) on water and water-NaCl solutions. Three parameters (P- and S-wave velocities and electrical resistivity) of concrete are measured using two NDT equipment in the laboratory while two parameters (density and water-to-binder ratio) are obtained from the design documents of the concrete cylinders. Three different machine learning methods, which include, artificial neural network (ANN), support vector machine (SVM) and Gaussian process regression (GPR), are used to obtain multivariate prediction models for compressive strength from multiple parameters. Based on the R-squared value, ANN results in the highest accuracy of estimation while GPR gives the lowest root-mean-squared error (RMSE). Considering both the data analysis and practicality of the method, the prediction model based on two NDE parameters (P-wave velocity measurement and electrical resistivity) and one design parameter (water-to-binder ratio) is recommended for assessing compressive strength under marine environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911506PMC
http://dx.doi.org/10.3390/ma15051662DOI Listing

Publication Analysis

Top Keywords

compressive strength
16
machine learning
8
learning methods
8
marine environment
8
electrical resistivity
8
water-to-binder ratio
8
concrete
5
prediction compressive
4
strength
4
strength partially
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!