AI Article Synopsis

  • Snakebite poses a major global health challenge, especially in low-income regions, leading researchers to explore small-molecule inhibitors to neutralize snake venom toxins.
  • The study focuses on viper species in Africa, particularly their anticoagulant phospholipase A (PLA) toxins and pseudo-procoagulant activities, which complicate clot formation and worsen bleeding.
  • Among the tested inhibitors, varespladib was the most effective against PLA toxins, while none effectively neutralized the pseudo-procoagulant activity, suggesting that multi-drug approaches may be needed for effective treatment.

Article Abstract

Snakebite remains a significant public health burden globally, disproportionately affecting low-income and impoverished regions of the world. Recently, researchers have begun to focus on the use of small-molecule inhibitors as potential candidates for the neutralisation of key snake venom toxins and as potential field therapies. vipers represent some of the most medically important as well as frequently encountered snake species in Africa, with a number of species possessing anticoagulant phospholipase A (PLA) toxins that prevent the prothrombinase complex from inducing clot formation. Additionally, species within the genus are known to exert pseudo-procoagulant activity, whereby kallikrein enzymatic toxins cleave fibrinogen to form a weak fibrin clot that rapidly degrades, thereby depleting fibrinogen levels and contributing to the net anticoagulant state. Utilising well-validated coagulation assays measuring time until clot formation, this study addresses the in vitro efficacy of three small molecule enzyme inhibitors (marimastat, prinomastat and varespladib) in neutralising these aforementioned activities. The PLA inhibitor varespladib showed the greatest efficacy for the neutralisation of PLA-driven anticoagulant venom activity, with the metalloproteinase inhibitors prinomastat and marimastat both showing low and highly variable degrees of cross-neutralisation with PLA anticoagulant toxicity. However, none of the inhibitors showed efficacy in neutralising the pseudo-procoagulant venom activity exerted by the venom of . Our results highlight the complex nature of snake venoms, for which single-compound treatments will not be universally effective, but combinations might prove highly effective. Despite the limitations of these inhibitors with regards to in vitro kallikrein enzyme pseudo-procoagulant venom activity, our results further support the growing body of literature indicating the potential use of small molecule inhibitors to enhance first-aid treatment of snakebite envenoming, particularly in cases where hospital and thus antivenom treatment is either unavailable or far away.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911647PMC
http://dx.doi.org/10.3390/molecules27051733DOI Listing

Publication Analysis

Top Keywords

venom activity
12
clot formation
8
small molecule
8
pseudo-procoagulant venom
8
inhibitors
6
venom
5
efficacy
4
efficacy limitations
4
limitations chemically
4
chemically diverse
4

Similar Publications

SARS-CoV-2 is from the enveloped virus family responsible for the COVID-19 pandemic. No efficient drugs are currently available to treat infection explicitly caused by this virus. Therefore, searching for effective treatments for severe illness caused by SARS-CoV-2 is crucial.

View Article and Find Full Text PDF

Understanding the effects of Bothrops erythromelas and Bothrops leucurus venoms on human blood coagulation.

Toxicon

January 2025

Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brasil; Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brasil. Electronic address:

Coagulation disorders are a primary symptom of envenomation caused by snakes belonging to the genus Bothrops. In the Northeast region of Brazil, the species Bothrops erythromelas and Bothrops leucurus are the main responsible for snakebite accidents. Due to the specific action of Bothrops venoms on several components of the coagulation cascade, the objective of this work was to characterize the coagulotoxic profile of B.

View Article and Find Full Text PDF

Mast Cells and Arteriogenesis: A Systematic Review.

Cardiovasc Pathol

January 2025

Department of Anatomical Sciences, St. George's University, School of Medicine, Grenada, West Indies; Department of Pathology, St. George's University, School of Medicine, Grenada, West Indies; Department of Clinical Anatomy, Mayo Clinic, Rochester, Minnesota; Nicolaus Copernicus Superior School, College of Medical Sciences, Olsztyn, Poland. Electronic address:

Vascular occlusive diseases remain a major health burden worldwide, necessitating a deeper understanding of the adaptive responses that mitigate their impact. Arteriogenesis, the growth and remodeling of collateral vessels in response to arterial occlusion, is a vital defense mechanism that counteracts fluid shear stress-induced vascular stenosis or occlusion. While physical factors driving arteriogenesis have been extensively studied, the specific cellular mediators involved are poorly understood.

View Article and Find Full Text PDF

A Tachyplesin Antimicrobial Peptide from Theraphosidae Spiders with Potent Antifungal Activity Against .

Microorganisms

December 2024

Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China.

The venoms of Theraphosidae spiders have evolved into diverse natural pharmacopeias through selective pressures. is a global health threat that frequently causes life-threatening meningitis and fungemia, particularly in immunocompromised patients. In this study, we identify a novel anti- peptide, QS18 (QCFKVCFRKRCFTKCSRS), from the venom gland of China's native spider species by utilizing bioinformatic tools.

View Article and Find Full Text PDF

Chinese scorpion (CS), a traditional animal-based medicine used for over a millennium, has been documented since AD 935-960. It is derived from the scorpion Karsch and is used to treat various ailments such as stroke, epilepsy, rheumatism, and more. Modern research has identified the pharmacological mechanisms behind its traditional uses, with active components like venom and proteins showing analgesic, antitumor, antiepileptic, and antithrombotic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!