This investigation is dedicated to unlocking the hidden potential of discarded cosmetics towards building green sustainable road pavements in the future. It is particularly aiming at exploring waste lipstick (WLS) as a high-quality functional additive for advanced asphalt mix technologies. To fuel this novel innovation, the effect of various WLS doses (e.g., 5, 10, and 15 wt.%) on the performance of base AP-5 asphalt cement was studied in detail. A wide array of cutting-edge analytical lab techniques was employed to inspect in-depth the physicochemical, microstructural, thermo-morphological, and rheological properties of resultant admixtures including: elemental analysis, Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thin-layer chromatography-flame ionization detection (TLC-FID), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), needle penetration, ring and ball softening point, Brookfield viscometer, ductility, and dynamic shear rheometer (DSR) tests. Unlike the unstable response of asphaltenes, the additive/artificial aging treatments increased the fraction of resins the most, and decreased that of aromatics; however, asphaltenes did not impair the saturates portion, according to Iatroscan research. FT-IR scan divulged that the WLS-asphalt interaction was physical rather than chemical. XRD diagnosis not only revealed an obvious correlation between the asphaltenes content and the fresh-binder crystallinity but also revealed the presence of fillers in the WLS, which may generate outstanding technical qualities to bituminous mixes. According to AFM/SEM analyses, the stepwise incorporation of WLS grew the magnitude of the "bee-shaped" microstructures and extended the roughness rate of unaged/aged binders. The prolonged consumption of the high thermal-stable additive caused a remarkable drop in the onset degradation and glass transition temperature of mixtures, thus enhancing their workability and low-temperature performance, according to TGA/DTGA/DSC data. The DSR and empirical rheological experiments demonstrated that the WLS could effectively lower the manufacturing and compaction temperatures of asphalt mixes and impart them with valuable anti-aging/fatigue-cracking assets. In a nutshell, the use of waste lipstick as an asphalt modifier is viable and cost-effective and could attenuate the pollution arisen from the beauty sector, while improving the performance of hot/warm asphalt mixes (HAM/WAM) and extending the service life of roadways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911790 | PMC |
http://dx.doi.org/10.3390/molecules27051697 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
Hepatocellular carcinoma (HCC) is a common malignancy and generally develops from liver cirrhosis (LC), which is primarily caused by the chronic hepatitis B (CHB) virus. Reliable liquid biopsy methods for HCC screening in high-risk populations are urgently needed. Here, we establish a porous silicon-assisted laser desorption ionization mass spectrometry (PSALDI-MS) technology to profile metabolite information hidden in human serum in a high throughput manner.
View Article and Find Full Text PDFInt J Cardiol
January 2025
Department of Cardiology, University of Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
J Cancer
January 2025
Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, School of Basic Medical Sciences, Hunan Normal University, Changsha, Hunan 410013, China.
Lysine succinylation is an emerging post-translational modification of proteins. It involves the addition of the succinyl group to lysine residues of target proteins through both enzymatic and non-enzymatic pathways. This modification can alter the structure of the target protein, which, in turn, impacts protein activity and function and is involved in a wide range of diseases.
View Article and Find Full Text PDFAdv Mater
December 2024
Laboratory for Atomistic and Molecular Mechanics (LAMM), Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
A key challenge in artificial intelligence (AI) is the creation of systems capable of autonomously advancing scientific understanding by exploring novel domains, identifying complex patterns, and uncovering previously unseen connections in vast scientific data. In this work, SciAgents, an approach that leverages three core concepts is presented: (1) large-scale ontological knowledge graphs to organize and interconnect diverse scientific concepts, (2) a suite of large language models (LLMs) and data retrieval tools, and (3) multi-agent systems with in-situ learning capabilities. Applied to biologically inspired materials, SciAgents reveals hidden interdisciplinary relationships that were previously considered unrelated, achieving a scale, precision, and exploratory power that surpasses human research methods.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy.
Rosemary ( Spenn. syn. L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!