A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Controlled Release of Insulin Based on Temperature and Glucose Dual Responsive Biomicrocapsules. | LitMetric

The treatment of diabetes lies in developing novel functional carriers, which are expected to have the unique capability of monitoring blood glucose levels continuously and dispensing insulin correctly and timely. Hence, this study is proposing to create a smart self-regulated insulin delivery system according to changes in glucose concentration. Temperature and glucose dual responsive copolymer microcapsules bearing -isopropylacrylamide and 3-acrylamidophenylboronic acid as main components were developed by bottom-spray coating technology and template method. The insulinoma β-TC6 cells were trapped in the copolymer microcapsules by use of temperature sensitivity, and then growth, proliferation, and glucose-responsive insulin secretion of microencapsulated cells were successively monitored. The copolymer microcapsules showed favorable structural stability and good biocompatibility against β-TC6 cells. Compared with free cells, the biomicrocapsules presented a more effective and safer glucose-dependent insulin release behavior. The bioactivity of secreted and released insulin did not differ between free and encapsulated β-TC6 cells. The results demonstrated that the copolymer microcapsules had a positive effect on real-time sensing of glucose and precise controlled release of insulin. The intelligent drug delivery system is supposed to mimic insulin secretion in a physiological manner, and further provide new perspectives and technical support for the development of artificial pancreas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912095PMC
http://dx.doi.org/10.3390/molecules27051686DOI Listing

Publication Analysis

Top Keywords

copolymer microcapsules
16
β-tc6 cells
12
controlled release
8
insulin
8
release insulin
8
temperature glucose
8
glucose dual
8
dual responsive
8
delivery system
8
insulin secretion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!