Perchlorotrityl radical (PTM), tris (2,4,6-trichlorophenyl) methyl radical (TTM), (3,5-dichloro-4-pyridyl) bis (2,4,6 trichlorophenyl) methyl radical (PyBTM), (N-carbazolyl) bis (2,4,6-trichlorophenyl) methyl radical (CzBTM), and their derivatives are stable organic radicals that exhibit light emissions at room temperature. Since these triarylmethyl radicals have an unpaired electron, their electron spins at the lowest excited state and ground state are both doublets, and the transition from the lowest excited state to the ground state does not pose the problem of a spin-forbidden reaction. When used as OLED layers, these triarylmethyl radicals exhibit unique light-emitting properties, which can increase the theoretical upper limit of the OLED's internal quantum efficiency (IQE) to 100%. In recent years, research on the luminescent properties of triarylmethyl radicals has attracted increasing attention. In this review, recent developments in these triarylmethyl radicals and their derivatives in OLED devices are introduced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911689PMC
http://dx.doi.org/10.3390/molecules27051632DOI Listing

Publication Analysis

Top Keywords

triarylmethyl radicals
16
methyl radical
12
246-trichlorophenyl methyl
8
radicals exhibit
8
lowest excited
8
excited state
8
state ground
8
ground state
8
radicals
5
progress triarylmethyl
4

Similar Publications

Engineering Air-Stable Triarylmethyl Radicals with One Pyrrole Ring.

Org Lett

January 2025

School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.

Herein, seven air-stable triarylmethyl radicals (-), each featuring a pyrrole ring, were successfully synthesized. A comprehensive investigation into the linkages at the α-, β-, and -positions of the pyrrole ring, along with various substituents, revealed that the p-π conjugation between the central radical carbon and the pyrrole ring plays a crucial role in the distribution of spin density and overall stability. Notably, radicals to displayed excellent electrochemical and photostability.

View Article and Find Full Text PDF

Magnetic Circular Dichroism of Luminescent Triarylmethyl Radicals.

J Phys Chem Lett

November 2024

Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

Stable triarylmethyl radicals are the most common carbon radical building blocks and have recently attracted much attention for their luminescent properties. However, magnetic circular dichroism (MCD) discovered by Michael Faraday and magnetic circularly polarized luminescence (MCPL) have not been observed for simple triarylmethyl radicals, probably due to their photodegradability. Here we report the first observation of MCD and MCPL of triarylmethyl radicals in solution using racemic mixtures of (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM) and (3,5-difluoro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (FPyBTM), which are much more photostable than simple triphenylmethyl radical derivatives.

View Article and Find Full Text PDF

The development of novel luminescent radicals, characterized by their unique doublet emission, endows a significant challenge. In this study, we reported the synthesis of a luminescent neutral radical, BCzAnM-R, tailored by two carbazolyl groups and an anthryl group to achieve a nonalternant structure. It exhibited near-infrared emission with a peak at 1020 nm in toluene.

View Article and Find Full Text PDF

The viscosity measurements are of clinical significance for evaluation of the potential pathological conditions of biological lubricants such as synovial fluids of joints, and for formulation and characterization of peptide- and protein-based biotherapeutics. Due to inherent potential therapeutic activity, protein drugs have proven to be one of the most efficient therapeutic agents in treatment of several life-threatening disorders, such as diabetes and autoimmune diseases. However, home-use applications for treating chronic inflammatory diseases, such as diabetes and rheumatoid arthritis, necessitate the development of high-concentration insulin and monoclonal antibodies formulations for patient self-administration.

View Article and Find Full Text PDF

Bright Fluorescent p-Phenylene-bridged Triarylmethyl Highly Stable Diradical.

Chemistry

April 2024

Materials Chemistry Course, Faculty of Advanced Science and Technology, Ryukoku University Seta, Otsu, Shiga, 520-2194, Japan.

Two units of highly stable luminescent triarylmethyl radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM), were bridged by p-phenylene linker. The photoluminescence quantum yield (PLQY) of PyBTM-PhPyBTM was at most 0.4 % in various organic solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!