A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water. | LitMetric

Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water.

Molecules

VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.

Published: February 2022

Extensive use of pesticides resulting in their accumulation in the environment presents a hazard for their non-target species, including humans. Hence, efficient remediation strategies are needed, and, in this sense, adsorption is seen as the most straightforward approach. We have studied activated carbon fibers (ACFs) derived from viscose fibers impregnated with diammonium hydrogen phosphate (DAHP). By changing the amount of DAHP in the impregnation step, the chemical composition and textural properties of ACFs are effectively tuned, affecting their performance for dimethoate removal from water. The prepared ACFs effectively reduced the toxicity of treated water samples, both deionized water solutions and spiked tap water samples, under batch conditions and in dynamic filtration experiments. Using the results of physicochemical characterization and dimethoate adsorption measurements, multiple linear regression models were made to reliably predict performance towards dimethoate removal from water. These models can be used to quickly screen among larger sets of possible adsorbents and guide the development of novel, highly efficient adsorbents for dimethoate removal from water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911764PMC
http://dx.doi.org/10.3390/molecules27051477DOI Listing

Publication Analysis

Top Keywords

dimethoate removal
16
removal water
16
highly efficient
8
efficient adsorbents
8
adsorbents dimethoate
8
acfs effectively
8
performance dimethoate
8
water samples
8
water
7
dimethoate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!