Synthesis of Ionizable Calix[4]arenes for Chelation of Selected Divalent Cations.

Molecules

Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany.

Published: February 2022

Two sets of functionalised calix[4]arenes, either with a 1,3-crown ether bridge or with an open-chain oligo ether moiety in 1,3-position were prepared and further equipped with additional deprotonisable sulfonamide groups to establish chelating systems for selected cations Sr, Ba, and Pb ions. To improve the complexation behaviour towards these cations, calix[4]arenes with oligo ether groups and modified crowns of different sizes were synthesized. Association constants were determined by UV/Vis titration in acetonitrile using the respective perchlorate salts and logK values between 3.2 and 8.0 were obtained. These findings were supported by the calculation of the binding energies exemplarily for selected complexes with Ba.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911665PMC
http://dx.doi.org/10.3390/molecules27051478DOI Listing

Publication Analysis

Top Keywords

oligo ether
8
synthesis ionizable
4
ionizable calix[4]arenes
4
calix[4]arenes chelation
4
chelation selected
4
selected divalent
4
divalent cations
4
cations sets
4
sets functionalised
4
functionalised calix[4]arenes
4

Similar Publications

The photopolymerization-induced microphase separation (photo-PIMS) process involving a reactive polymer block was implemented to fabricate nanostructured quasi-solid polymer electrolytes (QSPEs) for use in lithium metal batteries (LMBs). This innovative one-pot fabrication enhances interfacial properties in LMBs by enabling nanostructuring of QSPE directly onto the electrodes. This process also allows for customization of QSPE structural dimensions by tweaking the architecture and molar mass of poly[(oligo ethylene glycol) methyl ether methacrylate--styrene] (P(OEGMA--S)) macromolecular chain transfer agent.

View Article and Find Full Text PDF

Surface Modification of Gold Nanorods (GNRDs) Using Double Thermo-Responsive Block Copolymers: Evaluation of Self-Assembly and Stability of Nanohybrids.

Polymers (Basel)

November 2024

División de Física Aplicada, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada 22860, Mexico.

A series of copolymers containing a thermo-responsive biocompatible first block of poly[di(ethylene glycol) methyl ether methacrylate)--(oligo(ethylene glycol) methyl ether methacrylate], P(DEGMA--OEGMA) were chain-extended to incorporate either poly(-isopropylacrylamide), PNIPAAm or poly(-isopropylacrylamide--butyl acrylate), P(NIPAAm-co-BA) as second thermo-responsive block using reversible addition-fragmentation chain transfer (RAFT) polymerization. P(DEGMA--OEGMA)--PNIPAAm copolymers showed two response temperatures at 33 and 43 °C in an aqueous solution forming stable aggregates at 37 °C. In contrast, P(DEGMA--OEGMA)--P(NIPAAm--BA) copolymers showed aggregation below room temperature due to the shift in response temperature provoked by the presence of hydrophobic butyl acrylate (BA) units, and shrinkage upon heating up to body temperature, while maintaining the second response temperature above 40 °C.

View Article and Find Full Text PDF

Double hydrophilic, random, hyperbranched copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) utilizing ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resulting copolymers were characterized in terms of their molecular weight and dispersity using size exclusion chromatography (SEC), and their chemical structure was confirmed using FT-IR and H-NMR spectroscopy techniques. The choice of the two hydrophilic blocks and the design of the macromolecular structure allowed the formation of self-assembled nanoparticles, partially due to the pH-responsive character of the DMAEMA segments and their interaction with -COOH end groups remaining from the chain transfer agent.

View Article and Find Full Text PDF

Enhanced anti-bacterial properties and thermal regulation via photothermal conversion with localized surface plasmon resonance effect in cotton fabrics.

J Colloid Interface Sci

March 2025

Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany. Electronic address:

Enhanced anti-bacterial properties and thermal regulation are realized in cotton fabrics cross-linked with hybrid poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate-co-ethylene glycol methacrylate) nanogels containing gold nanoparticles (Au NPs), denoted as hybrid P(MA-co-MA-co-EGMA)/Au nanogels. Pure P(MA-co-MA-co-EGMA) nanogels are synthesized by emulsion polymerization as carriers and then embedded with Au NPs via in-situ reduction. By applying 1,2,3,4-butanetetracarboxylic acid as a cross-linker and changing the amount of hybrid P(MA-co-MA-co-EGMA)/Au nanogels in solution, the weight gain ratios of hybrid nanogels on cotton fabrics are set as 10 % (CHN-10) and 20 % (CHN-20).

View Article and Find Full Text PDF

Controlled pore glass (CPG), differing in pore size and subsequent specific surface, was chemically modified by: (1) increasing surface susceptibility for amine functionalization via reaction with oxirane-type (active) and alkyl/aryl-type (inactive towards amine compounds) silane pro-adhesive compounds, and (2) immobilization of trimethylolpropane tris[poly(propylene glycol), amine terminated] ether, comb-like 8-arm octa[poly(ethylene glycol) amine] with each branch amine terminated, and a poly(propylene imine) amine-terminated second-generation dendrimer. The increase in surface density of amine functions - monitored by UV-Vis technique adopted for quantitative measurements of Ruhemann's purple intensity - improved final loading capacity, characterized by dimethoxytrityl cation absorption. Obtained materials proved their applicability in automatic oligonucleotide (ON) synthesis, especially when silanized 2000 Å CPG modified with 8-arm octa[poly(ethylene glycol) amine], with deduced empirical formula CPG - silane - (NH)PEG-(NH), was used for long-chain (150 nucleotides) ONs synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!