Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The prevalence of chronic wounds is increasing due to the population aging and associated pathologies, such as diabetes. These ulcers have an important socio-economic impact. Thus, it is necessary to design new products for their treatment with an adequate cost/effectiveness ratio. Among these products are amorphous hydrogels. Their composition can be manipulated to provide a favorable environment for ulcer healing. The aim of this study was to evaluate a novel multifunctional amorphous hydrogel (EHO-85), containing leaf extract, designed to enhance the wound healing process. For this purpose, its moistening ability, antioxidant capacity, effect on pH in the wound bed of experimental rats, and the effect on wound healing in a murine model of impaired wound healing were assessed. EHO-85 proved to be a remarkable moisturizer and its application in a rat skin wound model showed a significant antioxidant effect, decreasing lipid peroxidation in the wound bed. EHO-85 also decreased the pH of the ulcer bed from day 1. In addition, in mice (BKS. Cg-m +/+ Leprdb) EHO-85 treatment showed superior wound healing rates compared to hydrocolloid dressing. In conclusion, EHO-85 can speed up the closure of hard-to-heal wounds due to its multifunctional properties that are able to modulate the wound microenvironment, mainly through its remarkable effect on reactive oxygen species, pH, and moistening regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911171 | PMC |
http://dx.doi.org/10.3390/jcm11051229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!