Imprinted materials possess designed cavities capable of forming selective interactions with molecules used in the imprinting process. In this work, we report the synthesis of 5-fluorouracil (5-FU)-imprinted microparticles and their application in prolonged drug delivery. The materials were synthesized using either ethylene glycol dimethacrylate (EGDMA) or trimethylolpropane trimethacrylate (TRIM) cross-linkers. For both types of polymers, methacrylic acid was used as a functional monomer, whereas 2-hydroxyethyl methacrylate was applied to increase the final materials' hydrophilicity. Adsorption isotherms and adsorption kinetics were investigated to characterize the interactions that occur between the materials and 5-FU. The microparticles synthesized using the TRIM cross-linker showed higher adsorption properties towards 5-FU than those with EGDMA. The release kinetics was highly dependent upon the cross-linker and pH of the release medium. The highest cumulative release was obtained for TRIM-based microparticles at pH 7.4. The IC values proved that 5-FU-loaded TRIM-based microparticles possess cytotoxic activity against HeLa cell lines similar to pure 5-FU, whereas their toxicity towards normal HDF cell lines was ca. three times lower than for 5-FU.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914908PMC
http://dx.doi.org/10.3390/polym14051027DOI Listing

Publication Analysis

Top Keywords

trim-based microparticles
12
prolonged drug
8
drug delivery
8
cell lines
8
microparticles
5
egdma- trim-based
4
microparticles imprinted
4
imprinted 5-fluorouracil
4
5-fluorouracil prolonged
4
delivery imprinted
4

Similar Publications

Imprinted materials possess designed cavities capable of forming selective interactions with molecules used in the imprinting process. In this work, we report the synthesis of 5-fluorouracil (5-FU)-imprinted microparticles and their application in prolonged drug delivery. The materials were synthesized using either ethylene glycol dimethacrylate (EGDMA) or trimethylolpropane trimethacrylate (TRIM) cross-linkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!