Interfacial Behaviour in Polymer Composites Processed Using Droplet-Based Additive Manufacturing.

Polymers (Basel)

Laboratory of Electromechanical Systems (LASEM), National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia.

Published: March 2022

In this study, we show the extent of interfacial behaviour in the mechanical performance of thermoplastic polyurethane elastomer (TPU)/acrylonitrile butadiene styrene (ABS) composite material manufactured using droplet-based additive manufacturing. Both the interface orientation and the interface strength are varied during the processing. Prior to tensile experiments, X-ray micro-tomography imaging is undertaken to obtain the microstructural arrangement of polymer droplets in the part. Tensile loading is performed simultaneously with digital image acquisition to reveal the extent of strain localization using a digital image correlation approach. The experiments are performed up to the failure of the specimens. Finite element computation based on 3D imaging of the ABS/TPU composite is considered to predict the role of the interface as well as the defect influence on the tensile performance. The experimental results show a major connectivity of the process-generated porosity and a distinct morphology of the ABS/TPU interface. The predictions demonstrate that, despite the limited amount of porosity, their connectivity plays a significant role in triggering damage initiation and growth up to the failure of the composite material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914745PMC
http://dx.doi.org/10.3390/polym14051013DOI Listing

Publication Analysis

Top Keywords

interfacial behaviour
8
droplet-based additive
8
additive manufacturing
8
composite material
8
digital image
8
behaviour polymer
4
polymer composites
4
composites processed
4
processed droplet-based
4
manufacturing study
4

Similar Publications

Self-Assembled Oligomers Facilitate Amino Acid-Driven CO Capture at the Air-Aqueous Interface.

J Phys Chem B

January 2025

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Direct air capture of CO using amino acid absorbents, such as glycine or sarcosine, is constrained by the relatively slow mass transfer of CO through the air-aqueous interface. Our recent study showed a marked improvement in CO capture by introducing CO-permeable oligo-dimethylsiloxane (ODMS-MIM) oligomers with cationic (imidazolium, MIM) headgroups. In this work, we have employed all-atom molecular dynamics simulations in combination with subensemble analysis using network theory to provide a detailed molecular picture of the behavior of CO and the glycinate anions (Gly) at the ODMS-MIM decorated air-aqueous interfaces.

View Article and Find Full Text PDF

SN2-Reaction-Driven Bonding-Heterointerface Strengthens Buried Adhesion and Orientation for Advanced Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Shandong University of Science and Technology, Institute of Carbon Neutrality, College of Chemical and Biological Engineering, No 579 Qianwangang Road, Huangdao District, 266590, Qingdao, CHINA.

Traditionally weak buried interaction without customized chemical bonding always goes against the formation of high-quality perovskite film that highly determines the efficiency and stability of perovskite solar cells. To address this issue, herein, we propose a bimolecular nucleophilic substitution reaction (SN2) driving strategy to idealize the robust buried interface by simultaneously decorating underlying substrate and functionalizing [PbX6]4- octahedral framework with iodoacetamide and thiol molecules, respectively. Theoretical and experimental results demonstrate that a strong SN2 reaction between exposed halogen and thiol group in two molecules occurs, which not only benefits the reinforcement of buried adhesion, but also triggers target-point-oriented crystallization, synergistically upgrading the upper perovskite film quality and accelerating interfacial charge extraction-transfer behavior.

View Article and Find Full Text PDF

Natural skin receptors use ions as signal carriers, while most of the developed artificial tactile sensors utilize electrons as information carriers. To imitate the biological ionic sensing behavior, here, we present a kind of biomimetic, ionic, and fully passive mechanotransduction mechanism leveraging mechanical modulation of interfacial ionic p-n junction (IPNJ) through microchannels. Sensors based on this mechanism do not rely on an external power supply and can encode external tactile stimuli into highly analogous signal outputs to those of natural skin receptors, in terms of both signal type (i.

View Article and Find Full Text PDF

Background/purpose: Although clinical studies have suggested a link between non-axial forces and reduced longevity of cervical restorations, the underlying mechanisms require further numerical investigation. This in-silico study employed a cohesive zone model (CZM) to investigate interfacial damage in a cervical restoration subjected to different load directions.

Materials And Methods: A plane strain model of a maxillary premolar was established, with a wedge-shaped buccal cervical restoration.

View Article and Find Full Text PDF

Enhancing Li Deposition Behavior through Valence Gradient-Assisted Iron Layer.

Nano Lett

January 2025

Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.

Uncontrolled lithium (Li) dendrite formation presents major safety risks and challenges in the Li host design. A novel approach is introduced, using a valence gradient in iron nanoparticles (Fe, Fe, Fe) to stabilize the anodes. An Fe component, with fast Li diffusion, ensures a steady supply of Li to Fe and Fe components, which have slower Li diffusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!