Effects of Thermal Activation on CNT Nanocomposite Electrical Conductivity and Rheology.

Polymers (Basel)

Mechanical and Aerospace Engineering Department, Naval Postgraduate School, Monterey, CA 93943, USA.

Published: March 2022

Carbon-based nanocomposites featuring enhanced electrical properties have seen increased adoption in applications involving electromagnetic interference shielding and electrostatic dissipation. As the commercialization of these materials grows, a thorough understanding of how thermal activation affects the rheology and electrical performance of CNT-epoxy blends can inform quality decisions throughout the production process. The aim of this work was the identification of the effects that thermal activation has on the electrical and rheological properties of uncured epoxy mixtures and how those may be tied to the resulting cured composites. Herein, three distinct CNT-loaded composite mixtures were characterized for changes in electrical resistivity and viscosity resulting from varying activation times. Electrical conductivity decreased as activation time increased. Uncured mixture viscosity exhibited a strong dependence on CNT loading and applied strain, with activation time being found to significantly reduce the viscosity of the uncured mixture and surface profile of cured composite films. In all cases, cured composites featured improved electrical conductivity over the uncured mixtures. Factors contributing to the observed behavior are discussed. Raman analysis, optical microscopy of CNT networks, and data from silica bead mixing and dispersion studies are presented to contextualize the results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914633PMC
http://dx.doi.org/10.3390/polym14051003DOI Listing

Publication Analysis

Top Keywords

thermal activation
12
electrical conductivity
12
effects thermal
8
cured composites
8
activation time
8
uncured mixture
8
electrical
7
activation
6
activation cnt
4
cnt nanocomposite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!