The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912407 | PMC |
http://dx.doi.org/10.3390/polym14050924 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!