Assessment of Functional Performance, Self-Healing Properties and Degradation Resistance of Poly-Lactic Acid and Polyhydroxyalkanoates Composites.

Polymers (Basel)

Department of Materials & Environment, Faculty of Civil Engineering & Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.

Published: February 2022

In this study, the applicability of two bacteria-based healing agents (e.g., poly-lactic acid and polyhydroxyalkanoate) in blast furnace slag cement (BFSC) mortar has been assessed. An experimental campaign on the functional properties, self-healing capacity, freezing-thawing and carbonation resistance has been conducted in comparison with plain mortar (Ctrl). Due to the relatively low alkalinity of the mixture, the addition of poly-lactic acid healing agents (PLA) caused coarsening of the micro-structure, decrease of strength and did not improve the self-healing capacity of the material. Among other consequences, the mass loss due to the freezing-thawing of PLA specimens was about 5% higher than that of the Ctrl specimens. On the contrary, no detrimental effect of the mortar functional properties was measured when polyhydroxyalkanoate healing agents (AKD) were added. The self-healing capacity of AKD specimens was higher than that of the Ctrl specimens, reaching a maximum healed crack width of 559 µm after 168 days of self-healing, while it was 439 µm for the Ctrl specimens and 385 µm for PLA specimens. The air void content of the AKD mixture was 0.9% higher than that of the Ctrl, increasing its resistance against freezing-thawing cycles. This study aims to confirm the potential applicability of AKD particles as self-healing agents in low-alkaline cementitious mixtures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912335PMC
http://dx.doi.org/10.3390/polym14050926DOI Listing

Publication Analysis

Top Keywords

poly-lactic acid
12
healing agents
12
self-healing capacity
12
higher ctrl
12
ctrl specimens
12
functional properties
8
pla specimens
8
specimens higher
8
self-healing
6
specimens
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!