In recent years, fluoropolymers have found numerous applications in the architectural field because of their combination of mechanical-chemical resistance and high transparency. In the present work, commercial fluorinated polymers, such as perfluoro alkoxy (PFA) and ethylene tetrafluoroethylene copolymer (ETFE), have been evaluated for use as protective and transparent layers on monumental and archaeological sites (to preserve mosaics or frescoes) during the phases of restoration or maintenance outdoors. Considering this specific application, the present study was developed by evaluating the evolution of the mechanical (tensile, tear propagation resistance, and low-velocity impact tests) and chemical (FTIR and DSC analysis) properties of the films after accelerated UV aging. The results that were obtained demonstrated the high resistance capacity of the ETFE, which exhibits considerably higher elastic modulus and critical tear energy values than PFA films (1075.38 MPa and 131.70 N/mm for ETFE; 625.48 MPa and 59.06 N/mm for PFA). After aging, the samples exhibited only a slight reduction of about 5% in the elastic modulus for both polymers and 10% in the critical tear energy values for PFA. Furthermore, the differences in impact resistance after aging were limited for both polymers; however, the ETFE film showed higher peak force than the PFA films (82.95 N and 42.22 N, respectively). The results obtained demonstrated the high resistance capacity of ETFE films, making them the most suitable candidate for the considered application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912537 | PMC |
http://dx.doi.org/10.3390/polym14050912 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!