Clonality, Mutation and Kaposi Sarcoma: A Systematic Review.

Cancers (Basel)

International Agency for Research on Cancer (IARC), World Health Organization, 69372 Lyon, France.

Published: February 2022

Background: It remains uncertain whether Kaposi sarcoma (KS) is a true neoplasm, in that it regresses after removal of the stimulus to growth (as HHV8) when immunosuppression is reduced. We aimed to summarize the available evidence on somatic mutations and clonality within KS to assess whether KS is a neoplasm or not.

Methods: Medline and Web of Science were searched until September 2020 for articles on clonality or mutation in KS. Search strings were supervised by expert librarians, and two researchers independently performed study selection and data extraction. An adapted version of the QUADAS2 tool was used for methodological quality appraisal.

Results: Of 3077 identified records, 20 publications reported on relevant outcomes and were eligible for qualitative synthesis. Five studies reported on clonality, 10 studies reported on various mutations, and 5 studies reported on chromosomal aberrations in KS. All studies were descriptive and were judged to have a high risk of bias. There was considerable heterogeneity of results with respect to clonality, mutation and cytogenetic abnormalities as well as in terms of types of lesions and patient characteristics.

Conclusions: While KS certainly produces tumours, the knowledge is currently insufficient to determine whether KS is a clonal neoplasm (sarcoma), or simply an aggressive reactive virus-driven lesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909603PMC
http://dx.doi.org/10.3390/cancers14051201DOI Listing

Publication Analysis

Top Keywords

clonality mutation
12
studies reported
12
kaposi sarcoma
8
clonality
5
mutation kaposi
4
sarcoma systematic
4
systematic review
4
review background
4
background remains
4
remains uncertain
4

Similar Publications

In the present study, we aimed to investigate intratumoral karyotype diversity as well as the estrogen/progesterone effect on the cytogenetic profile of uterine leiomyomas (ULs). A total of 15 UL samples obtained from 15 patients were cultured in the media supplemented with estrogen and/or progesterone and without adding hormones. Conventional cytogenetic analysis of culture samples revealed clonal chromosomal abnormalities in 11 out of 15 ULs.

View Article and Find Full Text PDF

Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation.

View Article and Find Full Text PDF

Background: Myelofibrosis (MF) is a clonal haematopoietic disease, with median overall survival for patients with primary MF only 6.5 years. The most frequent gene mutation found in patients is JAK2, causing constitutive activation of the kinase and activation of downstream signalling.

View Article and Find Full Text PDF

Immune checkpoint inhibitors can lead to 'exceptional', durable responses in a subset of persons. However, the molecular basis of exceptional response (ER) to immunotherapy in metastatic clear cell renal cell carcinoma (mccRCC) has not been well characterized. Here we analyzed pretherapy genomic and transcriptomic data in treatment-naive persons with mccRCC treated with standard-of-care immunotherapies: (1) combination of programmed cell death protein and ligand 1 (PD1/PDL1) and cytotoxic T lymphocyte-associated protein 4 inhibitors (IO/IO) or (2) combination of PD1/PDL1 and vascular endothelial growth factor (VEGF) receptor inhibitors (IO/VEGF).

View Article and Find Full Text PDF

Human tumors are diverse in their natural history and response to treatment, which in part results from genetic and transcriptomic heterogeneity. In clinical practice, single-site needle biopsies are used to sample this diversity, but cancer biomarkers may be confounded by spatiogenomic heterogeneity within individual tumors. Here we investigate clonally expressed genes as a solution to the sampling bias problem by analyzing multiregion whole-exome and RNA sequencing data for 450 tumor regions from 184 patients with lung adenocarcinoma in the TRACERx study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!