Role of Biomarkers in FLT3 AML.

Cancers (Basel)

Fosun Pharma USA Inc., Boston, MA 02421, USA.

Published: February 2022

AI Article Synopsis

  • Acute myeloid leukemia (AML) is a severe disease mainly affecting adults, marked by an overproduction of immature myeloid cells that can't develop into healthy white blood cells, leading to a low five-year survival rate of 24%.
  • Over half of AML patients have mutations in the FLT3 gene, making it a key target for emerging small-molecule treatments, though some mutations render these treatments less effective.
  • The text emphasizes the importance of identifying biomarkers to better categorize AML patients based on their specific FLT3 mutations, as well as exploring new strategies to overcome resistance to FLT3 inhibitors.

Article Abstract

Acute myeloid leukemia is a disease characterized by uncontrolled proliferation of clonal myeloid blast cells that are incapable of maturation to leukocytes. AML is the most common leukemia in adults and remains a highly fatal disease with a five-year survival rate of 24%. More than 50% of AML patients have mutations in the FLT3 gene, rendering FLT3 an attractive target for small-molecule inhibition. Currently, there are several FLT3 inhibitors in the clinic, and others remain in clinical trials. However, these inhibitors face challenges due to lack of efficacy against several FLT3 mutants. Therefore, the identification of biomarkers is vital to stratify AML patients and target AML patient population with a particular FLT3 mutation. Additionally, there is an unmet need to identify alternative approaches to combat the resistance to FLT3 inhibitors. Here, we summarize the current knowledge on the utilization of diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for FLT3-mutated AML. The resistance mechanisms to various FLT3 inhibitors and alternative approaches to combat this resistance are also discussed and presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909069PMC
http://dx.doi.org/10.3390/cancers14051164DOI Listing

Publication Analysis

Top Keywords

flt3 inhibitors
12
flt3
8
aml patients
8
alternative approaches
8
approaches combat
8
combat resistance
8
aml
6
role biomarkers
4
biomarkers flt3
4
flt3 aml
4

Similar Publications

A Simple Machine Learning-Based Quantitative Structure-Activity Relationship Model for Predicting pIC Inhibition Values of FLT3 Tyrosine Kinase.

Pharmaceuticals (Basel)

January 2025

Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile.

Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the challenges involved in effectively delivering the siRNA into cells. We investigated the delivery of siRNA to AML MOLM-13 cells with the use of two lipid-substituted polyethyleneimines (PEIs), a commercially available reagent (Prime-Fect) and a recently reported reagent with improved lipid substitution (PEI1.

View Article and Find Full Text PDF

Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.

View Article and Find Full Text PDF

Intrachromosomal amplification of chromosome 21 (iAMP21) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in children is a high-risk subtype for which targeted drugs are lacking. In this study, we determined the frequency of secondary lesions in 28 iAMP21 BCP-ALL patient samples and investigated cellular sensitivity for candidate-targeted drugs. iAMP21 was enriched in aberrations (10.

View Article and Find Full Text PDF

The crosstalk between cancers and the immune microenvironment plays a critical role in malignant progression. FMS-like tyrosine kinase 3 (FLT3) is a frequently mutated gene in acute myeloid leukemia (AML). However, its role in solid cancers remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!