Demand for particleboards keeps increasing and as such more trees are fell for its production, engendering deforestation. For the purpose of reducing falling of trees, this study, focused on recycling of waste paper in the development of paperboard as alternative to particleboards used for furniture and interior household applications. Kenaf fiber (KF) was blended at varying proportions of 0, 1, 2, 3, 4, and 5 wt.% with 20 wt.% constant cement and 20 wt.% constant coconut shell powder while the remaining was paper pulp. Board specimen developed were cured for 14, 28, and 90 days and mechanical properties were examined. Results obtained showed that fiber dosage improved bond strength and screw holding strengths as compared with the control mix. Similarly, modulus of rupture was enhanced with KF loading as compared with control mix while 1 to 3 wt.% KF spawned enhancement of modulus of elasticity. However, 4 and 5 wt.% KF led to a reduction in the modulus. Infusion of the fiber enhanced tensile strength from 1 to 3 wt.% content. 14-day and 28-day curing periods were observed to improve properties while the 90-day curing period is detrimental to all properties. Optimization via signal-to-noise ratio revealed an optimum mix of 2 wt.% obtained for fiber and an optimum curing duration of 28 days.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-19449-8DOI Listing

Publication Analysis

Top Keywords

wt% constant
8
compared control
8
control mix
8
mix wt%
8
wt%
7
mechanical performance
4
performance taguchi
4
taguchi optimization
4
optimization kenaf
4
kenaf fiber/cement-paperboard
4

Similar Publications

Background: The lateral entorhinal cortex (LEC), followed by area CA1 of hippocampus, are interconnected brain areas implicated early in Alzheimer's disease (AD). Processing of LEC input by CA1 pyramidal neurons (PNs) is critical for non-spatial memory, in which deficits are seen in early AD. How this process is affected by tauopathy is unclear.

View Article and Find Full Text PDF

Insecticide resistance escalation is decreasing the efficacy of vector control tools. Monitoring vector resistance is paramount in order to understand its evolution and devise effective counter-solutions. In this study, we monitored insecticide resistance patterns, vector population bionomics and genetic variants associated with resistance over 3 years from 2021 to 2023 in Uganda.

View Article and Find Full Text PDF

TiC provides a promising potential for high-temperature microwave absorbers due to its unique combination of thermal stability, high electrical conductivity, and robust structural integrity. C@TiC/SiO composites were successfully fabricated using a simple blending and cold-pressing method. The effects of C@TiC's absorbent content and temperature on the dielectric and microwave absorption properties of C@TiC/SiO composites were investigated.

View Article and Find Full Text PDF

Understanding Titan's Prebiotic Chemistry: Synthesizing Amino Acids Through Aminonitrile Alkaline Hydrolysis.

ACS Earth Space Chem

December 2024

Planetary Environments Laboratory NASA/GSFC, Greenbelt, Maryland 20771, United States.

Titan is an ocean world with a plethora of organic material in its atmosphere and on its surface, making it an intriguing location in the search for habitable environments beyond Earth. Settled aerosols will mix with transient surface melts following cryovolcanic eruptions and impact events, driving hydrolysis reactions and prebiotic chemistry. Previous studies have shown that the hydrolysis of laboratory-synthesized Titan organics leads to the production of amino acids and other prebiotic molecules.

View Article and Find Full Text PDF

H and P MR Spectroscopy to Assess Muscle Mitochondrial Dysfunction in Long COVID.

Radiology

December 2024

From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.).

Background Emerging evidence suggests mitochondrial dysfunction may play a role in the fatigue experienced by individuals with post-COVID-19 condition (PCC), commonly called long COVID, which can be assessed using MR spectroscopy. Purpose To compare mitochondrial function between participants with fatigue-predominant PCC and healthy control participants using MR spectroscopy, and to investigate the relationship between MR spectroscopic parameters and fatigue using the 11-item Chalder fatigue questionnaire. Materials and Methods This prospective, observational, single-center study (June 2021 to January 2024) included participants with PCC who reported moderate to severe fatigue, with normal blood test and echocardiographic results, alongside control participants without fatigue symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!