Vascular graft infections (VGI) are severe complications in prosthetic vascular surgery with an incidence ranging from 1 to 6%. In these cases, synthetic grafts are commonly used in combination with antimicrobial agents. Expanded polytetrafluoroethylene (ePTFE) is in clinical use as a synthetic graft material and shows promising results by influencing bacterial adhesion. However, the literature on antibiotic-bound ePTFE grafts is scarce. Gentamicin is a frequently used antibiotic for local treatment of surgical site infections, but has not been evaluated as antimicrobial agent on ePTFE grafts. In this study, we examine the antimicrobial efficacy and biocompatibility of novel types of gentamicin-coated ePTFE grafts in vitro. ePTFE grafts coated with gentamicin salt formulations with covalently-bound palmitate were evaluated in two drug concentrations (GP1.75% and GP3.5%). To investigate effects from types of formulations, also suspensions of gentamicin in palmitate as well as polylactide were used at comparable levels (GS + PA and GS + R203). Antibacterial efficacies were estimated by employing a zone of inhibition, growth inhibition and bacterial adhesion assay against Staphylococcus aureus (SA). Cytotoxicity was determined with murine fibroblasts according to the ISO standard 10993-5. Gentamicin-coated ePTFE grafts show low bacterial adherence and strong antibacterial properties in vitro against SA. Bactericidal inhibition lasted until day 11. Highest biocompatibility was achieved using gentamicin palmitate GP1.75% coated ePTFE grafts. ePTFE grafts with gentamicin-coating are effective in vitro against SA growth and adherence. Most promising results regarding antimicrobial properties and biocompatibility were shown with chemically bounded gentamicin palmitate GP1.75% coatings. Graphical abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913444PMC
http://dx.doi.org/10.1007/s10856-022-06650-xDOI Listing

Publication Analysis

Top Keywords

eptfe grafts
32
gentamicin-coated eptfe
12
gentamicin palmitate
12
eptfe
9
grafts
9
vascular graft
8
graft infections
8
strong antibacterial
8
antibacterial properties
8
properties vitro
8

Similar Publications

In vitro assessment of small-diameter synthetic vascular grafts usually uses standard cell culture conditions with early-passage cells. However, these conduits are mainly implanted in elderly patients and are subject to complex cellular interactions influenced by age and inflammation. Understanding these factors is central to the development of vascular grafts tailored to the specific needs of patients.

View Article and Find Full Text PDF

PTFE Stent Membrane Based on the Electrospinning Technique and Its Potential for Replacing ePTFE.

ACS Appl Bio Mater

December 2024

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China.

Expanded poly(tetrafluoroethylene) (ePTFE), obtained by the paste extrusion-stretching method, is a commonly used stent membrane material for the treatment of arterial stenosis or aneurysm in clinical practice. However, the structure of ePTFE is nonfibrous, which is not friendly to cells, and the equipment consumes a lot of energy and often requires the use of flammable and toxic lubricants. In this study, electrospinning was used to prepare PTFE vascular stent membranes, following plasma treatment, dopamine, and heparin grafting to obtain an anticoagulant surface.

View Article and Find Full Text PDF

Introduction: Synthetic materials have traditionally been used to reconstruct the diaphragm during extensive surgery for pleural mesothelioma. However, new biomaterials have shown promising results in various surgical fields. This study describes our experience using homologous fascia lata for diaphragm reconstruction in patients undergoing surgery with radical intent for pleural mesothelioma.

View Article and Find Full Text PDF

The modern congenital heart surgeon has an array of materials available for cardiovascular repair. With advancements in the surgical outcomes for pediatric cardiac defects, choice of material has become increasingly dependent on late-term complications associated with each material. Calcification is a leading long-term complication and is increasing in prevalence with materials lasting longer in patients.

View Article and Find Full Text PDF

Objective: The physical impact of the application of Heli-FX EndoAnchors (EA; Medtronic, Minneapolis, USA) on endograft (EG) material is unclear. This study aimed to examine the possible EG membrane alterations after EA implantation.

Methods: Heli-FX EndoAnchors were applied into four aortic endocuffs: AFX2 (Endologix Inc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!